Home » Industry news

A Comprehensive Guide to Polypropylene Injection Molding - polypropylene plastic

Author:gly    Date: 2024-10-15    

The short answer: plastic injection molds cost anywhere between $100 for a 3D printed low-volume injection mold to $100,000+ for a complex multi-cavity steel mold for high-volume production, which generally represents the most significant fixed start-up cost in injection molding. However, as these costs get distributed among hundreds or thousands of parts, injection molding is an ideal process to mass-produce plastic parts affordably.

Download our white paper for guidelines for using 3D printed molds in the injection molding process to lower costs and lead time and see real-life case studies with Braskem, Holimaker, and Novus Applications.

Online injection molding cost estimators or quotes from injection molding service providers can provide benchmarks and help you estimate the cost of injection molding specific parts.

The plastic parts’ size and volume significantly influence the product’s final cost and lead time of the prototyping process. The intended prototype’s total volume significantly influences the choice of the ideal prototyping technique.

FDM 3D printing is the most common 3D printing technique used in plastic prototyping. It usually includes extrusion for a layer-by-layer plastic material deposition until it creates the final product.

Image

Several factors can influence plastic parts’ prototyping costs. These factors include the preferred material, the part’s complexity, and the chosen fabrication technique. Although 3D printing is often less costly than CNC machining, injection molding is relatively more expensive than the 3D printing processes and CNC machining due to mold milling costs.

However, how soon you need your plastic prototype may determine your choice of a rapid prototyping technique. Some methods use cutting-edge tooling with automation to achieve plastic prototypes within 24 hours or less. Unfortunately, the tooling and setups for some methods could result in weeks as lead time. Therefore, choosing the process that creates parts quickly is advisable if you need to test your plastic prototype quickly.

Production volume: The number of items to be produced using injection molding determines the production technology and the quality of material to use when creating the mold. Low volume projects might require 3D printed or lower-grade machined aluminum molds, while large production volumes will require high-grade steel molds or even multiple molds to manage the process without wear and tear affecting the quality of produced items. This affects the cost of the mold, but of course, the increased cost of high volume molds is distributed among more parts, which normally leads to a lower per part cost.

Material cost is defined by a model’s design, the material chosen, and the amount of material used to execute the injection molding process.

Apply a core cavity approach that simplifies the design of Side B of a mold. The core cavity approach involves sinking the wall cavities into the mold base, thereby reducing the need to mold steep draft angles while improving surface finish.

The equipment associated with injection molding is generally self-regulating and relies on automation to get the job done. CNC machines, EDM machines, and industrial 3D printers rely on the specifications of the CAD design to produce a mold. The injection molding machine also relies on automation to inject materials into the mold, and industrial IM machines often cool and eject the finished item autonomously.

Therefore, ensure you choose a method that offers prototype parts with the final product’s exact colors, geometry, and surface finishing.

Special-purpose machines are used for injection molding that can range from smaller desktop injection molding machines that businesses can use in-house to large industrial injection molding machines that are mostly operated by service providers, contract manufacturers, and large manufacturers.

Understanding the different types of costs associated with injection molding requires an in-depth analysis of the process.

In this guide, we provide an extensive breakdown of the different factors that make up the total injection molding cost.

Large industrial injection molding machines can cost anywhere from $50,000 to $200,000+. These machines also come with more stringent facility requirements and require skilled labor for operation, maintenance, and monitoring. As a result, unless injection molding is a core competence, most enterprises outsource mass production to service providers and contract manufacturers, in which case the equipment costs are included in the service costs.

Plastic prototyping is beneficial to plastic product development because it facilitates the stimulation of the final product features. Therefore, it is easier to test the product’s functionality and the design’s correctness before mass producing the product.

Part size: The larger the item or part to be molded, the larger its mold will be to accommodate the part. Larger parts tend to require more injected materials to complete production cycles. Larger mold designs usually come at an increased cost compared to fabricating the same design but with smaller dimensions.

Additionally, plastic prototyping allows product designers to optimize or modify designs with prototyping companies before plastic machining. As a result, it mitigates risks of design errors and failed prototyping, ensuring the production of functional plastic prototypes.

A CAD model illustrates how the plastic components assemble and function. Preparing a CAD model for your plastic prototypes helps you to make a physical prototype model that is either visual or functional.

3D printing: 3D printing is a powerful solution to fabricate injection molds rapidly and at a low cost. It requires very limited equipment, saving CNC time and skilled operators for other high-value tasks in the meantime. Manufacturers can benefit from the speed and flexibility of in-house 3D printing to create molds that can be used on both desktop and industrial molding machines. Furthermore, product development benefits from the ability to iterate on the design and test the end-use material before investing in hard tooling for mass production. Stereolithography (SLA) 3D printing technology is a great choice for injection molding. It is characterized by a smooth surface finish and high precision that the mold will transfer to the final part and that also facilitates demolding. 3D prints produced by stereolithography are chemically bonded such that they are fully dense and isotropic. Desktop SLA printers, like those offered by Formlabs, start below $5,000 and can seamlessly be integrated into any injection molding workflow as they are easy to implement, operate, and maintain.

3D printing or additive manufacturing comprises various manufacturing technologies. It is one of the cutting-edge prototyping techniques following the advent of Industry 4.0 that revolutionized the manufacturing arena. 3D printing is an umbrella term, as stated earlier. Below are three of the most common techniques for 3D prototype plastic parts fabrication:

For enterprises with the equipment and tools for injection molding, choosing to create molds in-house could be the least expensive option if the technical know-how is also available. If the tools needed for injection molding are not readily available, then outsourcing reduces the cost associated with developing a mold.

It is a fast, intensive process where high heat and pressure are involved to inject molten material inside a mold. The molten material depends on the scope of the manufacturing project. The most popular materials are various thermoplastics, such as ABS, PS, PE, PC, PP, or TPU, but metals and ceramics can be injection molded as well. The mold consists of a cavity that accommodates the injected molten material and is designed to closely mirror the final features of a part.

In this video, we've partnered with injection molding service provider Multiplus to walk you through the steps of the injection molding process using 3D printed molds.

CNC machining: CNC machines are the most commonly used tools for manufacturing aluminum and stainless steel molds with high precision levels. CNC machining removes material by a spinning tool and fixed part. Machining can produce molds where the cavity design is highly complex, but they might require multiple tool changes that can slow down the process, which means that costs increase in line with complexity. CNC machines are industrial tools that require a skilled workforce and a dedicated space, which means that many companies outsource mold production to service providers.

The CAD model creation is a fundamental requirement in plastic prototype development. The Computer-Aided Design (CAD) model digitally represents your proposed plastic part. It portrays how the plastic parts should appear.

This white paper showcases the cost-dynamics for real-life use cases, and presents guidelines for using SLS 3D printing, injection molding, or both.

Injection molding is the ideal fabrication method whenever you need limited plastic parts prototype production runs. It offers valuable ways of manufacturing prototypes despite being a popular method for full-scale production. The injection molding technique includes the creation of a metal die. You must mix the plastic resin into a heated barrel and forcefully inject it into the metal die.

In general, injection molding is the most efficient at higher volumes, as the costs then get distributed among thousands of parts. But even though the cost per part for low-volume injection molding is slightly higher, it is still substantially more affordable for low-volume production than other manufacturing methods.

We leverage our broad network of partners in several industries to bring your design ideas to reality in the best possible ways. As you submit your design file today, experience our professional feedback and recommendations for effective plastic part prototyping. Contact us now, and let professionals handle your plastic prototyping projects!

3D printing techniques have low fixed costs, ensuring zero economies of scale. Moreover, the first imitation has the exact cost as the last copy. Likewise, CNC machining has low fixed costs, with total costs increasing steadily. So, the cost of each part will be a little higher than the similar parts created with 3D printing. The cost of the first few parts is relatively high, as in the case of prototype plastic injection molding. However, the cost reduces gradually as the volume increases.

Digital milling machines ensure the effectiveness of the CNC machining process. Hence, you must provide the proper process automation with a computer available to control the CNC milling machine using uploaded 3D files. Moreover, you do not need molds to create prototype CNC plastic parts. As a result, it is more cost-effective and requires CAD rendering to begin CNC plastic prototyping.

Developing more complex molds requires technical expertise. As a result, enterprises often outsource specific aspects of the injection molding process such as the design and fabrication of the mold.

It is important to note that a majority of the injection molding process is dedicated to cooling. The quicker a mold cools down the faster the injected material solidifies and the faster the production cycle can be repeated. Thus, cooling channels play an important role, especially for high-volume production, and should be included in the design of the mold. For low-volume production with 3D printed molds, manual cooling using compressed air is an option.

Mid-volume production is the most efficient with machined aluminum molds that have a lower cost than traditional steel mold, but are durable enough to last a few thousand shots, depending on factors like the material and the design. In most cases, low-volume injection molding is only reasonable with 3D printed molds—in our example, if we were to use an aluminum mold to produce 100 parts, its cost would account for $30 for each part, while a traditional steel mold would mean $200 for each part.

A molding cost comparison table also serves a similar purpose. Injection molding service providers use cost comparison tables to provide prospective customers with a rough estimate of the process.

Depending on the chosen materials, you can make plastic prototypes with greater strength and resolution with industrial-grade FDM printers. Additionally, FDM 3D is a flexible procedure well suited to various materials such as polycarbonate, PLA, Nylon, ABS, PETG, etc.

Stay updated with the latest 3D printing news, interviews with experts from around the world and tutorials on how to leverage 3D printing.

Due to their strength, durability, and functionality, plastic product designers often make prototypes using nylon, ABS, acrylic, polycarbonate, and polyphenylsulfone.

Image

Tooling costs for injection molding are very high and depend on a number of parameters and design complexity. Molds for injection molding are normally CNC machined out of aluminum or tool steel, EDM machined to shape a workpiece, or 3D printed. The machined or printed part is then finished to achieve the desired standard. The finished mold consists of features such as the surface geometries needed for a part, a runner system to guide the flow of injected materials, and cooling channels to ensure the mold cools down quickly.

Use 3D printed injection molds with both benchtop and industrial machines to efficiently and affordably produce hundreds to thousands of functional prototypes, parts to accelerate product development, reduce costs and lead times, and bring better products to market.

Part design: Complex part designs with intricate geometries require complex molds to execute the project. Mold designs usually have 2 sides: sides A and B. Side A, also known as the cosmetic side, is usually the side seen by the user. Side A is expected to be smooth and aesthetically pleasing. Side B contains the hidden structures that support the usage of the part. Side B structure may include ribs, bosses, etc., and its finish is usually much rougher than that of Side A. Molds with complex Side A and Side B designs are generally more expensive to fabricate compared to simpler molds. Complex designs that feature undercuts might also require sliding side-actions and cores, increasing the cost of the mold.

Evaluate the CAD model to determine its feasibility before undertaking an injection molding project. Eliminate potential bottlenecks such as steep angles, undercuts, and other complex geometries.

You can develop your master models for vacuum casting operations using CNC machining or 3D printing. Then, you have to create silicone-based cutting molds after completing the master model. You’ll have to inject the molten plastic/raw material into the mold cavity using a vacuum bell jar. The mold parts usually take 30-40 minutes to solidify to create a prototype replica.

Monitoring costs: Despite the reliance on automation, equipment operators are expected to monitor the progress of the injection molding process. Operator wages accrued during the process are added to the total cost of injection molding.

Simple low-volume 3D printed molds can be produced on an (SLA) resin 3D printer for as little as $100. An aluminum mold for a mid-volume production run of approximately 1,000-5,000 units falls within the range of $2,000 to $5,000. For molds with more complex geometries and primed for larger production runs of approximately 10,000+ units, the cost of mold can range from $5,000 to $100,000.

Image

Plastic parts hardly get the deserved credit for the role played in product manufacturing despite being everywhere and having multiple applications in various industries.

While injection molding is traditionally considered a manufacturing process only for mass production due to its high tooling costs, leveraging 3D printing to fabricate injection molds empower you to use this process to produce high-quality and repeatable parts for prototyping and low-volume production.

In this webinar, we'll show you how to use stereolithography (SLA) 3D printed molds in the injection molding process to lower costs, reduce lead times, and bring better products to market.

Producing low volumes of parts with injection molding is the most cost-effective with smaller desktop injection molding machines and 3D printed molds. If you are new to injection molding and are looking into testing it with limited investment, using a benchtop manual injection molding machine such as the Holipress or the Galomb Model-B100 could be a good option. Automated small-scale injection molding equipment such as the desktop machine Micromolder or the hydraulic machine Babyplast 10/12 are good alternatives for medium-series production of small parts.

Plastic prototyping is among the versatile methods of rapid prototyping. You can choose the ideal procedure to produce prototypes from the range of available manufacturing processes. Here are four of the effective plastic prototyping methods:

Manufacturers and product developers often utilize plastic parts for different purposes, ranging from lids for coffee cups to computer keyboards, cable insulation, surgical gloves, and window frames. However, it would help to note that all plastic products started as prototypes.

Plastic parts rapid prototyping is helpful in the quick development of plastic parts for initial design verification and validation. It reduces the overall product development time and costs. Unlike injection molded parts, rapid prototyping for plastic parts offer lower tool modification cost.

Normally, the main cost driver in injection molding is the cost of the mold, also known as the tooling cost. The cost of designing and building a mold depends on the required production volume, the complexity of the part design, mold material, and the process used to create the mold.

Rapid cooling of the plastic injection molds into a solid component is the last step of the injection molding process. It offers a prototype with outstanding mechanical properties and a high-quality surface finish. Injection molding is compatible with common thermoplastic materials like Nylon, ABS, Polycarbonate, Polyethylene, etc.

SLS technique utilizes a high-powered laser like SLA 3D printing. However, it forges powdered materials together to create a 3D model. It offers a superior print quality compared to the FDM 3D technique. You’ll discover that plastic prototypes made using SLS 3D have higher resolutions and are more functional. As such, they are usually more durable and flexible compared to FDM prints.

Embrace the use of self-mating parts to reduce the need to create multiple molds when one universal mold can be used to achieve similar results.

From AT-Machining, I’m a CNC Machining Expert in this field for more than 20 years.  We offer cost-effective machining services from China. Ask for a quote for your ongoing or upcoming projects now!

The specific stresses or stains that a part will be exposed to determine the perfect plastic prototype material. You must balance cost with your prototype’s functional requirements and aesthetics before picking the ideal material. Therefore, before concluding, you must compare the available plastic prototyping techniques with the ideal application characteristics.

Besides, plastic prototype manufacturing allows manufacturers to engage potential investors and customers. They can test these prototypes themselves. As such, these plastic parts prototypes help you gauge your potential customer’s interest in the product before launching.

The cost of the mold is largely defined by the complexity and the amount of time it takes to produce it. We advise adhering to design for manufacturing principles to drive down part costs with injection molding.

CNC machining is an effective and fast-paced plastic prototyping method. It utilizes multiple tools to create 3D models of your design from solid blocks of materials. It uses a subtractive process to create prototypes. That is, this technique operates conversely to 3D printing. It removes material from the solid block, unlike the additive 3D printing process. Nonetheless, it doesn’t mean you cannot create plastic prototypes with varied materials.

SLA 3D printing uses plastic resin materials to make 3D plastic prototypes. It employs a high-powered laser to solidify the model. This technique can be used for prototyping medical, dental, and general consumer electronics applications.

Simple low-volume 3D printed molds can cost as little as $100, while the cost of designing and manufacturing complex molds for high-volume production may hit the $100,000 mark. Despite the considerable fixed start-up costs, the injection molding process has low variable costs due to the inexpensive thermoplastics materials, short cycle times, and the labor needs decrease progressively due to automation and economies of scale. This means that the variable costs of production are low and the process becomes more efficient and the cost per part decreases at higher volumes as the costs get distributed among hundreds or thousands of parts.

AT-Machining is the ideal partner for your prototype manufacturing and fabrication needs. Submit your file and get an instant quotation now!

This plastic prototyping process allows you to imitate as many plastic prototypes as possible. It uses a master model to form parts that are perfect for testing. When you use the vacuum casting technique for your plastic prototypes, you must inject molten plastic (raw material) into a silicone mold to form the prototype. However, it would be best to make a master model before creating your silicone molds.

In this white paper, learn how to combine rapid tooling with traditional manufacturing processes like injection molding, thermoforming, or casting.

The three scenarios in the table show the methods and the mold types that result in the lowest cost per part depending on the production volume.

Plastic prototyping is essential to developing high-quality plastic components that meet the intended purposes. Also, choosing the appropriate prototyping method helps to ensure the cost-effective and flexible manufacturing of high-quality plastic prototypes and parts. Hence, it is essential to understand everything about prototyping technologies. However, AT-Machining is your best bet if you need professional help with your plastic prototyping and rapid tooling!

ABS (Acrylonitrile Butadiene Styrene) is an easy-to-use thermoplastic commonly used in filament form. It exists in powder form for SLS (Selective Laser Sintering) processes. More importantly, it is one of the most cost-effective and accessible materials for 3D printing.

* Equipment costs are not calculated into the production costs in this example as the cost of these tools can be distributed among multiple projects. Purchasing a desktop injection molding machine and an SLA 3D printer allows businesses to get started with injection molding for less than $10,000.

A wide variety of plastics can be used for injection molding depending on the requirements of the final parts, including ABS, PS, PE, PC, PP, or TPU.

Prototyping is a resourceful design process for many entrepreneurs and manufacturing businesses. As such, plastic prototypes are used for various applications across industries. Product designers rely on plastic prototypes to physically assess plastic parts before initiating mass production. These plastic prototypes help you study your plastic parts’ physical representation without delay.

The vacuum casting method works well with an extensive range of materials, ranging from opaque to transparent. Moreover, you can reuse the silicone-based casting molds to make about 25 plastic prototypes. This technique facilitates faster design actualization and ensures the close proximity of your product development and mass production.

Part volume and cavities: Part volume refers to the cavity size of a mold. The more cavities or cavity volume a mold requires the longer the press time. Increased press time slows down the production process which leads to increased cost.

Since prototypes have varied quality requirements, choosing the ideal plastic prototyping method for your applications is essential. Although your prototypes and production parts can have an approximate resemblance in the early stages, both must match closely when development approaches launching. As such, here are critical considerations for effective plastic prototype production:

Therefore, it is evident that these plastic prototyping techniques have comparable costs, which depend majorly on the method used and the required volume.

The cost of purchasing materials for molds differs according to the material chosen. Thermoplastic pellets cost approximately $1 to $5 per kg.

Your plastic prototype’s application should be your initial consideration when producing plastic prototypes. Product developers usually use plastic parts in various industries and for varying purposes. Your plastic parts prototype might be for functional testing with prospective consumers. Conversely, you might need the prototype for non-functional testing for marketing or sales.

Prototype plastic injection molding forms the base for subsequent molds needed to complete your production runs. Industries such as medical, consumer goods, automobiles, electronics, and packaging utilize injection molded parts.

AT-Machining is the right manufacturing service provider capable of offering the solution for your plastic machining needs. We have good years of experience and a team of expert designers and engineers that allow us to handle your project best and deliver superior-quality plastic prototypes.

Repair cost: Repair and maintenance tasks involve the replacement of defective parts and the use of tools to execute the maintenance process.

Electrical discharge machining (EDM): The EDM method is generally used to create highly complex mold designs that cannot be easily reproduced using standard machining methods. EDM involves the use of a workpiece and a tool electrode to create the desired mold shape. The tool electrode and workpiece electrode are separated by a dielectric fluid and subjected to voltages that cause recurring current discharges. The discharges are responsible for shaping the workpiece electrode into the final mold. EDM is highly accurate and does not generally require any additional post-processing. Similar to CNC machining, EDM is also an industrial process that many companies outsource to machine shops.

The table below highlights the cost associated with injection molding a hypothetical plastic item, such as a small enclosure of an electronic device, which makes the cost dynamics of injection molding easier to understand:

Evaluate the model’s design to eliminate unnecessary features. This reduces the mold’s size and the material used to develop the model.

The design form and complexity may include intricate internal features and tight tolerances. As such, these factors help to decide the ideal prototyping technique for your prototypes. It would be best to note that the geometry of designs often limits some manufacturing options. They may require high-level Design for Manufacturing (DFM) optimization to be cost-effective or economical at best. The ideal choice is to choose technologies that can effectively match the intended geometry of your plastic prototype.

This guide discusses the comprehensive guide to plastic prototyping. You’ll learn everything about the significance of plastic prototypes, plastic prototype development, methods for plastic prototyping, costs, and essential tips. Let’s get to it!

Setup/configuration cost: The setup labor focuses on the time taken to configure the utilized equipment to produce the mold and the finished product.

Injection molding is one of the leading processes for manufacturing plastics. It is widely used for mass-producing identical parts with tight tolerances. It is a cost-effective and extremely repeatable technology that yields high-quality parts for large series production.

Certain processes may have higher initial setup and tooling costs while they make inexpensive parts. Conversely, other techniques may require lower startup costs but higher part costs due to lesser automation, slower cycle times, and labor costs. The costs of such processes only reduce marginally, even with increased volumes.

When producing in-house, these costs are calculated into the labor costs. When a business outsources injection molding, the labor and the markup of the service provider are added to the service cost.

GETTING A QUOTE WITH LK-MOULD IS FREE AND SIMPLE.
TRY IT TODAY :

FIND MORE OF OUR SERVICES: