
New PE Resins Reduce Roto-Molding Cycle Times and Costs - polyethylene molding
Author:gly Date: 2024-09-30
Venture Plastics’ Newton Falls plant operates with a total of 92,000 square feet across two facilities — 67,000 square feet are dedicated to molding and 25,000 square feet are devoted to warehousing and engineering. There is also a 60,000-square-foot molding operation in El Paso.
Working to improve the situation, Fromm and his colleagues teamed up with the Kunststoff-Zentrum in Leipzig to develop a new kind of tempering technique that, depending on the product, is up to 90 percent more energy efficient than other techniques used to date. The trick is to avoid having to heat up the entire tool; these can weigh half a ton or even more depending on the plastic part being produced. All that is heated now is the surface of the tool that actually comes into contact with the plastic melt.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
The company provides customers with services such as engineering, design and project management support, injection/structural foam molding, over molding, insert molding, gas-assist molding, decoration, plating, assembly, and welding. Venture Plastics has expertise processing a variety of engineered materials with UL traceability.
To achieve this, the researchers set about integrating incredibly fine thermocouples, made from nickel or nickel-chrome alloy and each just a few hundred nanometers thick. Thermo- couples can be produced using thin-film technology and incorporated into the insulation layer. Due to their extremely low mass, thermocouples react incredibly fast to temperature changes and make it possible to directly measure the temperature of the tool wall. Through a series of laboratory experiments, the researchers were able to demonstrate that thin-film heating can be used to achieve the desired tool wall temperature very quickly indeed. The researchers are now looking for industry partners to help prepare the process for use in series manufacture.
This is possible thanks to thin-film heating. Researchers coat the wall of the forming tool using a vacuum-based coating technique known as sputtering. Imagine a game of pool in which the balls are base-material atoms – in this case from the thin film. Hitting them with energy-rich ions sends them ricocheting around the vacuum chamber. The sputtered material is deposited onto the surface of the forming tool in layers only a few micrometers thick (1 micrometer equals one thousandth of a millimeter). To put this into perspective, a human hair is approximately 80 micrometers thick. Not only can this extremely thin coating be used to heat the forming tool surface to the desired temperature, but it is also capable of withstanding the thermodynamic stresses that occur during injection molding.
Venture Plastics now has a total of 16 machines in El Paso and 19 presses in Newton Falls in capacities ranging from 55 to 1,440 tons.
We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.
To manufacture plastic parts with high-end surfaces, the entire forming tool is heated to around 110 degrees Celsius using a technique known as variothermic tempering. Thermo- plastic materials such as polycarbonate are processed at similar temperatures. In order to get the finished plastic part out without damaging it, the mold must be cooled by around 20 to 30 degrees Celsius. This has to be done for every production cycle before the whole process can begin again, which "eats up a considerable amount of energy," explains Alexander Fromm from the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg.
Electrical insulation is provided by a ceramic layer that shields the conductive heating layer from the steel tool underneath. The layer that actually gets heated is made of a specially designed conductive hard material. In this case, the challenge of sputtering lies not only in producing a perfect insulating layer so as to avoid any short circuits, but also in integrating a sensor into the thin-film heating layer. A sensor placed here can measure the temperature of the tool wall and be used to regulate the manufacturing process.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
A 123-ton Nissei press with a Yushin robot will be shipped to the company’s El Paso facility in March 2021. The other machine — a 197-ton press with robotic automation — was delivered to the Newton Falls plant this month. Both presses will be equipped with RJG eDARTS for process control.
Venture Plastics now has a total of 16 machines at its El Paso plant and 19 presses at its Newton Falls facility in capacities ranging from 55 to 1,440 tons.
In future, thin-film heating will allow plastic parts to be produced with greatly improved surface quality. Researchers have also found a way to make the whole process more energy efficient.
“Over the past several years, Venture Plastics has added equipment in El Paso and Newton Falls and expanded its Newton Falls facility with additional square footage to meet our growth goals,” commented Steve Trapp, President, Venture Plastics. “Our customers in the consumer, major appliance, energy storage, solar, rail, fuel delivery, medical, and agriculture markets will all benefit from the addition of these two Nissei machines.”
Thermoplastics injection molder Venture Plastics Inc. reports that it has purchased two new Nissei injection molding presses to meet growing customer demand. The full-service, ISO/IATF 16949–certified molder operates processing facilities in Newton Falls, OH, and El Paso, TX.
If you have ever tried to make waffles then you are bound to be familiar with the following problem: You only get good waffles if the iron is heated to the correct temperature. The same principle applies to the manufacture of plastics parts, such as displays, facings, covers and instrument panels, using injection molding techniques. A liquid plastic melt is injected into a steel forming tool which is heated just like a waffle iron. The point is to produce a perfect cast of the tool's surface, which may be smooth like a mirror or feature a functional structure. Using injection molding to realize the desired structural and functional surface qualities of plastic parts is intended as a one-step process without the need for any extensive finishing work. The process also has to be economic and energy efficient.
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Until she retired in September 2021, Clare Goldsberry reported on the plastics industry for more than 30 years. In addition to the 10,000+ articles she has written, by her own estimation, she is the author of several books, including The Business of Injection Molding: How to succeed as a custom molder and Purchasing Injection Molds: A buyers guide. Goldsberry is a member of the Plastics Pioneers Association. She reflected on her long career in "Time to Say Good-Bye."
GETTING A QUOTE WITH LK-MOULD IS FREE AND SIMPLE.
FIND MORE OF OUR SERVICES:


Plastic Molding

Rapid Prototyping

Pressure Die Casting

Parts Assembly
