Home » Industry news

Statistical Process Control in Injection Molding and Extrusion - spc injection m

Author:gly    Date: 2024-10-15    

A CAD model illustrates how the plastic components assemble and function. Preparing a CAD model for your plastic prototypes helps you to make a physical prototype model that is either visual or functional.

Plastic parts rapid prototyping is helpful in the quick development of plastic parts for initial design verification and validation. It reduces the overall product development time and costs. Unlike injection molded parts, rapid prototyping for plastic parts offer lower tool modification cost.

Due to their strength, durability, and functionality, plastic product designers often make prototypes using nylon, ABS, acrylic, polycarbonate, and polyphenylsulfone.

Access a wide breadth of capabilities through our highly vetted network.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

ABS (Acrylonitrile Butadiene Styrene) is an easy-to-use thermoplastic commonly used in filament form. It exists in powder form for SLS (Selective Laser Sintering) processes. More importantly, it is one of the most cost-effective and accessible materials for 3D printing.

AT-Machining is the ideal partner for your prototype manufacturing and fabrication needs. Submit your file and get an instant quotation now!

Certain processes may have higher initial setup and tooling costs while they make inexpensive parts. Conversely, other techniques may require lower startup costs but higher part costs due to lesser automation, slower cycle times, and labor costs. The costs of such processes only reduce marginally, even with increased volumes.

Image

Therefore, it is evident that these plastic prototyping techniques have comparable costs, which depend majorly on the method used and the required volume.

Injection molding is the ideal fabrication method whenever you need limited plastic parts prototype production runs. It offers valuable ways of manufacturing prototypes despite being a popular method for full-scale production. The injection molding technique includes the creation of a metal die. You must mix the plastic resin into a heated barrel and forcefully inject it into the metal die.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

Prototyping is a resourceful design process for many entrepreneurs and manufacturing businesses. As such, plastic prototypes are used for various applications across industries. Product designers rely on plastic prototypes to physically assess plastic parts before initiating mass production. These plastic prototypes help you study your plastic parts’ physical representation without delay.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

Create high quality custom mechanicals with precision and accuracy.

To achieve these goals, ISO 13485 outlines processes and procedures to manage risk and regulatory compliance while providing mechanisms to continuously improve the QMS whenever a gap or potential for improved performance is noted. The standard defines best practices for documentation, training, traceability, research and design, production, and how to handle non-conformances. For both the part designer and the injection molders, there are well-defined responsibilities.

Image

Manufacturers and product developers often utilize plastic parts for different purposes, ranging from lids for coffee cups to computer keyboards, cable insulation, surgical gloves, and window frames. However, it would help to note that all plastic products started as prototypes.

Besides, plastic prototype manufacturing allows manufacturers to engage potential investors and customers. They can test these prototypes themselves. As such, these plastic parts prototypes help you gauge your potential customer’s interest in the product before launching.

ISO 14644 regulates the use of cleanrooms during medical device manufacturing. It defines the various cleanroom classes from Class 1 to Class 9, where Class 1 has the most stringent cleanliness requirements.

Since prototypes have varied quality requirements, choosing the ideal plastic prototyping method for your applications is essential. Although your prototypes and production parts can have an approximate resemblance in the early stages, both must match closely when development approaches launching. As such, here are critical considerations for effective plastic prototype production:

Plastic prototyping is essential to developing high-quality plastic components that meet the intended purposes. Also, choosing the appropriate prototyping method helps to ensure the cost-effective and flexible manufacturing of high-quality plastic prototypes and parts. Hence, it is essential to understand everything about prototyping technologies. However, AT-Machining is your best bet if you need professional help with your plastic prototyping and rapid tooling!

Therefore, ensure you choose a method that offers prototype parts with the final product’s exact colors, geometry, and surface finishing.

In cleanrooms, the amount and size of airborne particles are carefully controlled to reduce the chances of exposing sensitive medical components to these particles. ISO 14644 also outlines specific requirements for designing, manufacturing, and maintaining cleanrooms for optimal performance. Designers may need an injection molder with a Class 7 or Class 8 cleanroom to limit the potential for contamination during manufacturing.

Plastic parts hardly get the deserved credit for the role played in product manufacturing despite being everywhere and having multiple applications in various industries.

The U.S. FDA (Food and Drug Administration), and the EU MDR (Medical Device Regulation) both divide medical devices into three classifications, where Class I refers to the lowest-risk medical devices and Class III refers to the highest-risk. The EU MDR further breaks down Class II devices into two subcategories: IIa and IIb.

We exist to eliminate bottlenecks in new product development by integrating the people, processes, and platform you need to source custom parts.

SLS technique utilizes a high-powered laser like SLA 3D printing. However, it forges powdered materials together to create a 3D model. It offers a superior print quality compared to the FDM 3D technique. You’ll discover that plastic prototypes made using SLS 3D have higher resolutions and are more functional. As such, they are usually more durable and flexible compared to FDM prints.

We exist to eliminate bottlenecks in new product development by integrating the people, processes, and platform you need to source custom parts.

This guide discusses the comprehensive guide to plastic prototyping. You’ll learn everything about the significance of plastic prototypes, plastic prototype development, methods for plastic prototyping, costs, and essential tips. Let’s get to it!

The vacuum casting method works well with an extensive range of materials, ranging from opaque to transparent. Moreover, you can reuse the silicone-based casting molds to make about 25 plastic prototypes. This technique facilitates faster design actualization and ensures the close proximity of your product development and mass production.

The QSR (Quality System Regulations), also referred to as 21 CFR part 820, as outlined by the FDA, has many parallels with ISO 13485. In the United States, the QSR may be used as a supplement or replacement for the ISO 13485 standard.

We leverage our broad network of partners in several industries to bring your design ideas to reality in the best possible ways. As you submit your design file today, experience our professional feedback and recommendations for effective plastic part prototyping. Contact us now, and let professionals handle your plastic prototyping projects!

3D printing techniques have low fixed costs, ensuring zero economies of scale. Moreover, the first imitation has the exact cost as the last copy. Likewise, CNC machining has low fixed costs, with total costs increasing steadily. So, the cost of each part will be a little higher than the similar parts created with 3D printing. The cost of the first few parts is relatively high, as in the case of prototype plastic injection molding. However, the cost reduces gradually as the volume increases.

Additionally, plastic prototyping allows product designers to optimize or modify designs with prototyping companies before plastic machining. As a result, it mitigates risks of design errors and failed prototyping, ensuring the production of functional plastic prototypes.

The medical device industry is tightly controlled to ensure patient safety. Listed below are some of the common standards that affect manufacturing, including plastic injection molding.

Class I medical devices are not intended to support or sustain life and will not present an unreasonable risk of illness or injury to a patient. Examples include wheelchairs, glasses, hospital beds, and test tubes.

Industry standards play an important role in the design and manufacture of medical products, especially medical devices. For designers, these standards help ensure that patients, the end-users of injection molded products, are not exposed to excessive risks during medical treatment. So injection molders must implement stringent processes and procedures to control all stages of production and comply with standards.

Digital milling machines ensure the effectiveness of the CNC machining process. Hence, you must provide the proper process automation with a computer available to control the CNC milling machine using uploaded 3D files. Moreover, you do not need molds to create prototype CNC plastic parts. As a result, it is more cost-effective and requires CAD rendering to begin CNC plastic prototyping.

Our trained employees ensure your parts will be delivered on time and to spec.

The design form and complexity may include intricate internal features and tight tolerances. As such, these factors help to decide the ideal prototyping technique for your prototypes. It would be best to note that the geometry of designs often limits some manufacturing options. They may require high-level Design for Manufacturing (DFM) optimization to be cost-effective or economical at best. The ideal choice is to choose technologies that can effectively match the intended geometry of your plastic prototype.

Your plastic prototype’s application should be your initial consideration when producing plastic prototypes. Product developers usually use plastic parts in various industries and for varying purposes. Your plastic parts prototype might be for functional testing with prospective consumers. Conversely, you might need the prototype for non-functional testing for marketing or sales.

ISO 10993 focuses primarily on the biocompatibility requirements for medical devices. It encompasses products that are designed to come into direct or indirect contact with the body. The goal of ISO 10993 is to reduce the risk of adverse effects on patients when exposed to materials that include, but are not limited to, injection molded plastics. ISO 10993 compliant materials are non-toxic, do not affect the immune system, or do not potentially cause cancer.

Depending on the chosen materials, you can make plastic prototypes with greater strength and resolution with industrial-grade FDM printers. Additionally, FDM 3D is a flexible procedure well suited to various materials such as polycarbonate, PLA, Nylon, ABS, PETG, etc.

SLA 3D printing uses plastic resin materials to make 3D plastic prototypes. It employs a high-powered laser to solidify the model. This technique can be used for prototyping medical, dental, and general consumer electronics applications.

FDM 3D printing is the most common 3D printing technique used in plastic prototyping. It usually includes extrusion for a layer-by-layer plastic material deposition until it creates the final product.

Plastic injection molding is used in many different applications within the medical industry. Examples include enclosures for medical equipment, the overmolding of surgical tools, and spinal implants. Designers have a choice of materials, but the selected plastic must meet the application’s requirements. For example, plastics that will be sterilized with steam need to resist high temperatures and moisture, while those that will come into contact with patients must be biocompatible, meaning that they’re not harmful to living tissue.

Fictiv can produce injection-molded products for a wide range of medical applications. We have the resources, know-how, and manufacturing network to deliver the injection molded parts that you need, far faster than other manufacturers. And, we deliver 95.4% of orders on time and to spec, thanks to our network of highly-vetted partners, on-site quality engineers, and robust quality management system. Create an account and upload your medical device design today! Along with your quote, you’ll receive expert design for manufacturing (DFM) feedback and guidance to ensure you get great outcomes.

This plastic prototyping process allows you to imitate as many plastic prototypes as possible. It uses a master model to form parts that are perfect for testing. When you use the vacuum casting technique for your plastic prototypes, you must inject molten plastic (raw material) into a silicone mold to form the prototype. However, it would be best to make a master model before creating your silicone molds.

Accelerate development with instant quotes, expert DFM, and automated production updates.

Class III medical devices are usually designed to sustain or support life and may present an unreasonable risk of injury or illness. Examples include pacemakers, defibrillators, and implanted prostheses.

CNC machining is an effective and fast-paced plastic prototyping method. It utilizes multiple tools to create 3D models of your design from solid blocks of materials. It uses a subtractive process to create prototypes. That is, this technique operates conversely to 3D printing. It removes material from the solid block, unlike the additive 3D printing process. Nonetheless, it doesn’t mean you cannot create plastic prototypes with varied materials.

The plastic parts’ size and volume significantly influence the product’s final cost and lead time of the prototyping process. The intended prototype’s total volume significantly influences the choice of the ideal prototyping technique.

However, how soon you need your plastic prototype may determine your choice of a rapid prototyping technique. Some methods use cutting-edge tooling with automation to achieve plastic prototypes within 24 hours or less. Unfortunately, the tooling and setups for some methods could result in weeks as lead time. Therefore, choosing the process that creates parts quickly is advisable if you need to test your plastic prototype quickly.

Rapid cooling of the plastic injection molds into a solid component is the last step of the injection molding process. It offers a prototype with outstanding mechanical properties and a high-quality surface finish. Injection molding is compatible with common thermoplastic materials like Nylon, ABS, Polycarbonate, Polyethylene, etc.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

For designers, it’s important to remember that not all polymers are suitable for medical devices. However, injection molding supports the use of many different materials, typically commodity plastics but also specialty plastics and polymer blends. Designers can also choose medical plastics that have specific trade names like ULTEM®, a polyetherimide (PEI) that can withstand repeated cycles in an autoclave. Below are some common injection molding plastics and their salient characteristics:

The ISO 10993 standard consists of 23 parts or subsections. This includes processes and procedures for animal welfare requirements, tests for carcinogenicity, reproductive toxicity, in vitro cytotoxicity, and various sterilization techniques. USP (United States Pharmacopeia) Class VI covers similar biocompatibility requirements for plastics and, as such, is sometimes used in place of ISO 10993 or as a supplement. For designers, this standard can play an important role in material selection.

AT-Machining is the right manufacturing service provider capable of offering the solution for your plastic machining needs. We have good years of experience and a team of expert designers and engineers that allow us to handle your project best and deliver superior-quality plastic prototypes.

You can develop your master models for vacuum casting operations using CNC machining or 3D printing. Then, you have to create silicone-based cutting molds after completing the master model. You’ll have to inject the molten plastic/raw material into the mold cavity using a vacuum bell jar. The mold parts usually take 30-40 minutes to solidify to create a prototype replica.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

Class II encompasses any medical device for which general controls are deemed insufficient to provide reasonable safety and effectiveness. Examples include contact lenses, syringes, and pregnancy tests. The EU MDR adds two subcategories:

Image

Prototype plastic injection molding forms the base for subsequent molds needed to complete your production runs. Industries such as medical, consumer goods, automobiles, electronics, and packaging utilize injection molded parts.

From AT-Machining, I’m a CNC Machining Expert in this field for more than 20 years.  We offer cost-effective machining services from China. Ask for a quote for your ongoing or upcoming projects now!

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

3D printing or additive manufacturing comprises various manufacturing technologies. It is one of the cutting-edge prototyping techniques following the advent of Industry 4.0 that revolutionized the manufacturing arena. 3D printing is an umbrella term, as stated earlier. Below are three of the most common techniques for 3D prototype plastic parts fabrication:

Medical injection molding can be used for prototyping or low-volume production, but it’s often used in high-volume manufacturing for medical devices. In part, that’s because products can be injection molded at-scale with consistent quality and with minimal human intervention. Here are some common examples of injection-molded medical products:

Designers also need to select plastics that meet medical industry standards. This article examines the standards that affect the production of injection-molded medical products. By selecting materials that meet these standards, designers do more than meet requirements from independent bodies and regulatory agencies — ultimately, they promote quality, performance, and safety.

Several factors can influence plastic parts’ prototyping costs. These factors include the preferred material, the part’s complexity, and the chosen fabrication technique. Although 3D printing is often less costly than CNC machining, injection molding is relatively more expensive than the 3D printing processes and CNC machining due to mold milling costs.

Of course, proper product design is also critical for medical devices, so check out our free Injection Molding Design Guide for best practices — it complements the info in this article.  Download Fictiv’s Injection Molding Design Guide

The specific stresses or stains that a part will be exposed to determine the perfect plastic prototype material. You must balance cost with your prototype’s functional requirements and aesthetics before picking the ideal material. Therefore, before concluding, you must compare the available plastic prototyping techniques with the ideal application characteristics.

Medical devices are classified according to their potential for causing harm to patients, the general public, or to other personnel who use or operate the medical device. This classification determines the degree of required regulatory oversight.

By signing up, you agree to our Terms of Use and Privacy Policy. We may use the info you submit to contact you and use data from third parties to personalize your experience.

Plastic prototyping is among the versatile methods of rapid prototyping. You can choose the ideal procedure to produce prototypes from the range of available manufacturing processes. Here are four of the effective plastic prototyping methods:

Plastic prototyping is beneficial to plastic product development because it facilitates the stimulation of the final product features. Therefore, it is easier to test the product’s functionality and the design’s correctness before mass producing the product.

The CAD model creation is a fundamental requirement in plastic prototype development. The Computer-Aided Design (CAD) model digitally represents your proposed plastic part. It portrays how the plastic parts should appear.

ISO 13485 outlines the requirements for a quality management system (QMS) when producing medical-grade products. It is the most common standard used in medical device manufacturing. ISO 13485 is not limited to plastic injection molding but rather covers the general requirements for all manufacturing technologies that are used to produce medical equipment. This standard was developed to ensure that consistent quality is maintained and that medical devices and equipment are produced in a safe and effective manner.

GETTING A QUOTE WITH LK-MOULD IS FREE AND SIMPLE.
TRY IT TODAY :

FIND MORE OF OUR SERVICES: