
More Effective Camshaft Machining - best plastics for machining
Author:gly Date: 2024-09-30
Within our focus industries, the circular economy and especially the use of recyclates are currently the most pressing topics. While we don’t see the latter reflected in the medical field yet due to regulations, this could change soon if we can provide a solution which reliably and automatically compensates process fluctuations. When companies start to use larger percentages of recyclates in their manufacturing processes, measuring technology becomes even more important, while it will not change as such. Melts containing recyclates have a fluctuating viscosity and as a result, parameters which indicate viscosity changes such as cavity pressure need to be constantly monitored to ensure a high product consistency. Again, AI could also come into play to detect and even predict anomalies.
Stephen has been with PlasticsToday and its preceding publications Modern Plastics and Injection Molding since 1992, throughout this time based in the Asia Pacific region, including stints in Japan, Australia, and his current location Singapore. His current beat focuses on automotive. Stephen is an avid folding bicycle rider, often taking his bike on overseas business trips, and is a proud dachshund owner.
Germany’s government-funded DuroBast project is focused on the use of bast fibers for the production of composite structural components. The project aims to develop thermoformable thermoplastic composites employing renewable bast fibers as reinforcements for a range of applications in automotive and sports equipment. Initial research work has focused on composite components such as bus bellows, center consoles, and snowboards.
In addition to flax, initial investigations have confirmed the advantages of the hemp plant. Its climatic requirements allow cultivation in Germany and, thus, offer supply security in times of an uncertain global logistics situation. Hemp’s price is also favorable versus flax fibers, and the entire plant can be utilized in medical and food applications, such as hemp seeds. Hemp is also environmentally advantageous with its ability to concentrate large quantities of CO2 during cultivation. In fiber-reinforced plastics, hemp can reduce the proportion of fossil plastic components by replacing them with renewable alternatives.
One way to make use of AI certainly lies in the analysis of data and automated predictions based on them. The key here would be a data platform such as Kistler’s akvisIO. It integrates production and measurement equipment such as sensors or field devices and collects their raw data. It then processes it and overall makes data from different sources comparable to each other. Machine learning algorithms can then use the data to draw larger conclusions on the performance of the overall production set-up, to predict maintenance needs and even anomalies. Our vision is that eventually, the algorithm will be able to foresee events that have never occurred before. To make that vision a reality and to also get users on board with the new way of utilising data, our large team of data scientists focus on usability and user experience in our continuous development. AkvisIO processes and analyses process data to be directly used as a basis for decision making. This eliminates the additional step of interpretation and makes the data more accessible. Of course, the user can also add their own interpretation of the data to the results based on their own experience. As the need for AI continues to develop within the industry, we’ve set up akvisIO in a modular way. Working with customers and identifying their specific needs will allow us to add features, or specific modules tailored to a particular application or user group. One area of application could be advanced process control including trends and prediction, which could make processes even more efficient and robust, especially in terms of energy and raw material consumption.
During my time in the medical devices industry, I have seen several major changes. In 2010, when I started out, companies were still skeptical towards cavity pressure measurement. Those that went on to integrate the technology were mainly interested in using it for straightforward process monitoring, ignoring more sophisticated opportunities. When I joined Kistler, one major project was the creation of ComoNeo, a system which was a serious level-up to the previous solution ComoInjection. As a software designed specifically for injection moulders, ComoNeo provided a much better user experience and was quickly very successful on the market. It also attracted a lot of interest from the medical field. To meet the needs of medtech companies, we created a company-internal group to unite experts from the areas of plastics applications and advanced manufacturing. While the former bring a lot of material expertise, the latter have extensive knowledge in the monitoring of joining and assembly processes. Joining forces, the team saw the immense potential of gathering and analysing meaningful data in the medical field. This has lead to Kistler becoming the sole provider of the process navigator Stasa QC by Stasa, which enables the process monitoring system to provide efficient, automated documentation of the test plans and also to perform the corresponding process analyses. Most recently, we have also presented AkvisIO IME (Injection Moulding Edition), our inhouse process data solution to the broader public at Fakuma.
Initial tests on the production of hemp-polypropylene organic sheets delivered promising results. These fiber-reinforced thermoplastics exhibit strength and low density and are just as easy to process as conventional sheet metal components. The research team intends to comprehensively test further material combinations and processes in the following months.
While algorithm-based systems are already in use, there are two areas where we can improve and promote their reception. Firstly, when it comes to convincing companies of a solution they haven’t tried yet it is important to demonstrate that automated systems for the shopfloor are easy to set up and use. We will be working more closely with our customers to learn from their experiences, to improve our products as a whole and, as a result, to enhance their user experience.
Under the leadership of the Fraunhofer Institute for Structural Durability and System Reliability LBF, an interdisciplinary research consortium with 11 partners from science and industry, is working on the development of innovative bio-based materials. Members of the consortium are linking their expertise in all areas of the value chain and aim to transfer project results to concrete applications such as automotive interiors (door panels), sports equipment (snowboards), and public transport (bus bellows) in the near future.
Interdisciplinary research team seeks to develop thermoformable thermoplastic composites using renewable bast fibers as reinforcement.
Native bast plants such as flax, hemp, and nettle have been used for fiber production for centuries. Their fibers are characterized by an array of properties and are suitable for the manufacture of a variety of products. Besides clothing, these fibers historically were used for technical applications such as sacks, sails, ropes, and nets. Today, their lightweight construction potential makes bast fibers an interesting material alternative in the development of fuel-efficient cars and electro-mobile solutions. Another advantage of flax and hemp is their low tendency to splinter, a positive attribute especially in traffic accidents.
The project partners are Dräxlmaier GmbH & Co. KG, Gustav Gerster GmbH & Co. KG, Hübner GmbH & Co. KG, Institute for Textile Technology RWTH Aachen, Leibniz Institute for Composite Materials GmbH, nova-Institut für politische und ökologische Innovation GmbH, Rhenoflex GmbH, silbaerg GmbH, Wagenfelder Spinnereien GmbH and the Chair of Materials Test Engineering (WPT) of TU Dortmund University.
Secondly, education is crucial. Educational opportunities are not only helping companies to see the benefits of a digital solution for their specific use case, but also to support employees on different levels in using them. That is why we have established the Kistler Plastics Academy. Here, we support our customers’ digital journey on three levels. On the basic level, we provide training for machine operators, application engineers and mould makers on how to install sensors, how to use the ComoNeo process monitoring system and the data base. On the advanced level, process engineers and production experts learn what is really happening inside the injection mould. On the expert level, data managers and quality engineers get insights into the potential of data management and data analysis.
Over the last ten years, measuring quality assurance throughout production has become industry standard because it provides reliable information about the quality of both process and product. Equally, digitalisation and automation of process monitoring have come a long way. Daniel Kormann, head of business development for plastics at Kistler, discusses the state of process monitoring and process control in the light of current developments such as AI and new regulations.
Currently, there are software modules and algorithms that allow injection moulders to automatically adjust process parameters if the measurement curve deviates from a previously defined ideal curve. For instance, if the cavity pressure measured by direct, indirect or non-contact sensors is too high or too low, the system can adjust the switch-over point automatically. The Multiflow software module by Kistler balances filling multiple cavities very efficiently. It analyses fill-time differences between the cavities based on cavity pressure. It then adjusts the tip temperature of the hot runner automatically to achieve a more simultaneous filling. Using automation is becoming ever more relevant as we look at a growing shortage of skilled workers on the shop floor.
To achieve 100 % bio-based material combinations in the long term, the research team is also striving to use a bio-based polymer matrix. The process should subsequently enable improved bonding of the matrix to the natural fiber component. Here, the yarns, nonwovens, and fabrics obtained from the fibers must meet the requirements of the intended end applications. Identifying the optimal fiber length, denier, purity, and strength; spinning method; and degree of fiber roasting are proving to be a challenge in this context. All selected components also must fulfil the target criteria of processability, economic efficiency, availability, and sustainability.
Due to their high moisture absorption, bast fibers have only been used to a limited extent in plastics and durable applications. Therefore, one of the innovation goals of the DuroBast project is to reduce the moisture absorption of the fibers through modification and then process them into yarns, nonwovens, and fabrics. To this end, the fibers will undergo pre-treatment. Specifically, fiber cavities and inter-fiber spaces will be filled with a thermoplastic that prevents water absorption even in damaged areas and cut edges of the composites. With this objective in mind, the team is examining and comparing the properties of various bast fibers, different processes, and the mode of action of different hydrophobic agents.
Quality management and quality assurance is essential in the medical industry as companies manufacture highly sensible products. Regulations such as Good Manufacturing Practice (GMP) in the US and Medical Device Regulations (MDR) in Europe require companies to comply with strict and ever more extensive standards. They have to keep an impeccable paper trail throughout the entire production processes, just as the saying goes: “If it hasn’t been documented, it doesn't exist.” This need for full documentation puts a lot of pressure on companies. It increases the demand for integrated process solutions that both document and optimise all relevant process parameters. The ComoNeo process monitoring system by Kistler, for instance, accurately measures the pressure in all cavities and compares the resulting curve with the nominal curve. ComoNeoPREDICT uses artificial intelligence to predict product quality based on cavity pressure and temperature curves. All things considered, I believe that there is still a lot of untapped potential for digital solutions.
Industrial injection molding press machine for the manufacture of conditioner parts using polymers in the management of worker
GETTING A QUOTE WITH LK-MOULD IS FREE AND SIMPLE.
FIND MORE OF OUR SERVICES:


Plastic Molding

Rapid Prototyping

Pressure Die Casting

Parts Assembly
