
Injection Molder Bases Company Culture on Employee Empowerment - best plastic in
Author:gly Date: 2024-09-30
The lack of a well-defined plateau in these materials, such as we saw in the nylon, makes prediction of cycle time far trickier. In addition, these three families have higher degrees of crystallinity than other semi-crystalline polymers.
Celebrating National Composites Week 2024, CW looks at how composites are being used to provide the next generation of energy.
Initial demonstration in furniture shows properties two to nine times higher than plywood, OOA molding for uniquely shaped components.
During the last decade, NCTM has introduced several RTM molding innovations to make the process more affordable and predictable for a variety of part sizes and shapes. A notable project was a modular RTM tool suite for customer GDATP — DeLand Operations (formerly Intellitec, DeLand, Fla., U.S.A.), used to produce carbon fiber/epoxy stiffener frames and bulkheads for the Apache AH-64A helicopter fuselage (see "Focus on Design," HPC January 2002, p. 40). The modular premise, borrowed from injection molding, involves a common mold base with interchangeable cavity inserts. The inserts allow production of different part shapes from the same mold, says GDATP's RTM program manager Dan Davenport. For the Apache, thirteen different frame components were produced from just two modular aluminum RTM molds, one of which was fabricated by NCTM. The insert tooling strategy cost 70 percent less than creating individual molds for each part, which enabled the development project to meet its non-recurring cost budget.
Resin is injected at a pressure of 1 to 2 psi. Harper says the process works on the principle of peripheral injection, in which the resin is introduced around the periphery of the mold, between the edge of the part reinforcement and the inner pressure gasket, rather than at a single central injection inlet. Harper stresses that pressure control is critical, and that resin flow must be carefully controlled with a meter/mix machine and a pressure sensing and control device, such as Plastech's cost-effective Mould Pressure Guard (MPG) sensor or updated PV Sensor system, which allow precise machine pressure control in the millibar range.
In these sessions, experts will discuss the emerging hydrogen economy and the opportunities for composites in this lucrative space.
Exhibitors and presenters at the plastics show emphasized 3D printing as a complement and aid to more traditional production processes.
Additive technology creates air pockets in film during orientation, cutting down on the amount of resin needed while boosting opacity, mechanical properties and recyclability.
During this webinar, the audience will be introduced to a variety of fiber composite technologies — as well as the machines and equipment — from short fibers to continuous fibers, from thermoset to thermoplastic, as well as the according process technology, including a special focus on long-fiber injection (LFI) and structural composite spray (SCS). Focus markets include automotive, aviation and AAM, transportation, and construction. This webinar will provide a detailed overview of according application examples. Agenda: Long fiber injection (LFI) Structural composite spray (SCS) Resin transfer molding (RTM), wet compression molding, etc. Pultrusion FiberForm
An integrated software approach has also helped Apex Machine Tool Co. (Farmington, Conn., U.S.A.) reduce tooling development costs. The company employs Unigraphics Solutions from EDS (Maryland Heights, Mo., U.S.A.), a system that allows Apex to design, draft and machine an entire tooling project for true concurrent engineering. For a recent project, a customer's composite propeller design — also developed using Unigraphics — was readily downloaded into Apex's system, and engineers from both companies were able to collaborate on mold design throughout the process, for an on-time tool delivery and reduced cost. Apex has used its design expertise to develop unique break-apart mandrels for more efficient tooling designs, says Apex's composite designer Rich Walton.
The JEC Forum DACH is a business meetings event organised by JEC The JEC Forum DACH is organised on October 22 and 23, 2024 by JEC, in partnership with the AVK, gathering the composite materials community from the DACH Region (Germany, Austria and Switzerland).
Plastics Technology covers technical and business Information for Plastics Processors in Injection Molding, Extrusion, Blow Molding, Plastic Additives, Compounding, Plastic Materials, and Resin Pricing. About Us
Source: FormglasRen RP4040 tooling compound patties are applied to a machined aluminum honeycomb core block backup structure.
The Ren RP4040 material has a CTE roughly equivalent to aluminum with thermal transfer rates comparable to carbon/epoxy prepreg tooling, in contrast to some other products like tooling boards. In addition, even after cure, it can be rebonded and remachined, to easily accommodate design changes or mold repair. A sealant compatible with the epoxy resin system used in the part is required to ensure vacuum integrity. Burke says the LCTC system can save as much as 70 percent in overall mold material and fabrication time, compared to traditional methods.
MIT tooling, an RTM variation introduced about five years ago by Harper, incorporates multiple, identical, low-cost mold faces or skins, that can be quickly cycled in and out of the RTM mold press to increase productivity. While one skin is being injected and cured in the mold, others can be gel coated and loaded for the next cycle. Approximately 4 mm to 6 mm/0.158 inch to 0.25 inch thick, the skins can be composite, electroformed nickel, ceramic, elastomer or whatever material best suits the design. The system includes a heated hard tool base (which Harper calls a bolster), a matching upper counter mold, an offline "holding" bolster to support the MIT skins during demolding, and associated hardware.
The aim of this presentation is to guide you through the factors and the numbers that will help you determine if a robot is a smart investment for your application. Agenda: Why are you considering automation? What problems are you trying to solve? How and why automation can help Crunch the numbers and determine the ROI
Processors with sustainability goals or mandates have a number of ways to reach their goals. Biopolymers are among them.
ABOUT THE AUTHOR: Mike Sepe is an independent, global materials and processing consultant whose company, Michael P. Sepe, LLC, is based in Sedona, Ariz. He has more than 40 years of experience in the plastics industry and assists clients with material selection, designing for manufacturability, process optimization, troubleshooting, and failure analysis. Contact: (928) 203-0408 • mike@thematerialanalyst.com.
The alternating dry and resin-impregnated strips means that 50 percent of the ZPREG material is dry, which gives it excellent drape and formability for layup. The resin is allowed to bleed through on one side of the prepreg, which gives it a slight tack. The ZPREG resin system has a broad processing window, ranging from 65°C/150°F to 150°C/302°F under a vacuum bag, but can produce tools capable of making parts that cure at 177°C/350°F.
The Plastics Industry Association (PLASTICS) has released final figures for NPE2024: The Plastics Show (May 6-10; Orlando) that officially make it the largest ever NPE in several key metrics.
Say “manufacturing automation” and thoughts immediately go to the shop floor and specialized production equipment, robotics and material handling systems. But there is another realm of possible automation — the front office.
CompositesWorld’s Tech Days: Design, Simulation and Testing Technologies for Next-Gen Composite Structures is designed to provide a multi-perspective view of the state of the art in design, simulation, failure analysis, digital twins, virtual testing and virtual inspection.
Alan Harper, managing director of Plastech Thermoset Tectonics Ltd. (Gunnislake, Cornwall, U.K.) envisions low-cost, low-risk automated RTM systems for general and industrial molders making 500 to 2,000 parts per year, without the capital investment in heavy matched metal tools and associated tool manipulation infrastructure.
While prices moved up for three of the five commodity resins, there was potential for a flat trajectory for the rest of the third quarter.
DMA curve shows the relationship between modulus and temperature. For this and all PPs, development of modulus is gradual, and the actual temperature at which ejection can take place is therefore somewhat uncertain.
Across all process types, sustainability was a big theme at NPE2024. But there was plenty to see in automation and artificial intelligence as well.
Thermoplastics for Large Structures, experts explored the materials and processing technologies that are enabling the transition to large-part manufacturing.
Discover how artifical intelligence is revolutionizing plastics processing. Hear from industry experts on the future impact of AI on your operations and envision a fully interconnected plant.
Validation of 80-100% tensile strength and comparability to injection molding via Voxelfill extrusion process was achieved through plastic and fiber-filled test series.
CW’s editors are tracking the latest trends and developments in tooling, from the basics to new developments. This collection, presented by Composites One, features four recent CW stories that detail a range of tooling technologies, processes and materials.
The LRTM concept uses vacuum pressure to hold the two halves of a closed mold together, while injecting resin at very low pressure — essentially a hybrid of RTM and vacuum infusion processing. One mold half, usually the lower or female half, is relatively rigid, while the matching counter mold half is thin and relatively flexible. Typically a manufacturer can use his existing open mold if it has a suitable edge flange for sealing and resin injection; the matching counter can be readily fabricated on the lower mold. Advantages of LRTM include its simplicity and very low cost, ability to produce parts with gel coated surfaces on both sides, and the potential for producing four or five times as many parts per day as open molding. LRTM part tolerances are tighter and part-to-part consistency is greater than open-molded parts, but LRTM does not achieve levels associated with traditional RTM. Fiber volumes also are less, on the order of 18 to 20 percent.
This collection details the basics, challenges, and future of thermoplastic composites technology, with particular emphasis on their use for commercial aerospace primary structures.
Resin drying is a crucial, but often-misunderstood area. This collection includes details on why and what you need to dry, how to specify a dryer, and best practices.
For many applications, two-part RTM molds for liquid molding aren't the solution because of part size, materials or performance requirements. Tooling for complex aerospace parts has always required precision design and careful material selection because of technical issues, such as durability, CTE mismatch and tool movement during cure), that are beyond the obvious hurdles of cost and lead time. The standard approach has always been the "model-to-mold" route, starting with a certified master, often an intermediate "splash" or reverse mold, then the actual production mold and rate tools — all requiring a lot of time, materials and floor space. But toolmakers are pushing ahead to innovate in this arena, as well, with digital master patterns, new and more affordable materials, software changes and paradigm shifts in relationships with customers.
In my column last month, I reviewed the way semi-crystalline polymers develop their properties as they cool, using the technique of dynamic mechanical analysis (DMA). But I limited the treatment to a material with a glass-transition temperature (Tg) above room temperature. Here, let’s examine the behavior of semi-crystalline materials that never reach their Tg as they cool, and therefore do not go through the large step change in modulus associated with this event. Three very important material classes fall into this category: PE, PP, and POM, also referred to as acetal.
Join Engel in exploring the future of battery molding technology. Discover advancements in thermoplastic composites for battery housings, innovative automation solutions and the latest in large-tonnage equipment designed for e-mobility — all with a focus on cost-efficient solutions. Agenda: Learn about cutting-edge thermoplastic composites for durable, sustainable and cost-efficient battery housings Explore advanced automation concepts for efficient and scalable production See the latest large-tonnage equipment and technology innovations for e-mobility solutions
During this CW Tech Days event, sponsored by Composites One, experts will offer presentations to review and evaluate the composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.
A report on the demand for hydrogen as an energy source and the role composites might play in the transport and storage of hydrogen.
Mold maintenance is critical, and with this collection of content we’ve bundled some of the very best advice we’ve published on repairing, maintaining, evaluating and even hanging molds on injection molding machines.
Cevotec, a tank manufacturer, Roth Composite Machinery and Cikoni, have undertaken a comprehensive project to explore and demonstrate the impact of dome reinforcements using FPP technology for composite tanks.
CompPair and Composite Recycling introduce a roof scoop made of recycled fibers to an eco-efficient rally buggy, which channels airflow to the engine for optimal, sustainable performance.
Explore the technologies, materials and strategies used by composites manufacturers working in the evolving space market.
Reliable news and information on where and how fiber-reinforced composites are being applied — that’s just the start of what you get from our team here at CompositesWorld.
Continuous fiber-reinforced thermoplastic composite targets full circularity in aircraft interior applications, with FST, impact resistance and toughness features.
Whether you’re exploring new applications or seeking to gain a foothold in emerging markets, Carbon Fiber 2024 is where you’ll discover the insights and connections needed to shape your business strategy. Register now.
In this collection, which is part one of a series representing some of John’s finest work, we present you with five articles that we think you will refer to time and again as you look to solve problems, cut cycle times and improve the quality of the parts you mold.
While prices moved up for three of the five commodity resins, there was potential for a flat trajectory for the rest of the third quarter.
Especially in aerospace, new cost-saving tooling ideas are often stymied by the potential high cost of a part failure. Nevertheless, over the past five years, more cost-effective tooling innovations have proliferated, as vacuum and resin transfer molding (RTM) methods have been adapted for higher-performance applications. Traditional aerospace tooling is changing to take advantage of high-production-rate processing methods and new materials, while preserving part quality.
Recoat temperature, part orientation and bead geometry are some key design variables to consider for a successful and reliable large-format additive manufacturing (LFAM) process.
This session is designed to demonstrate the benefits of ultra polymers for aerospace applications with real case examples of Syensqo's polymer portfolio. Agenda: Introduction to ultra polymers (PAEK, PEKK, PEEK, PAI) key features Application of ultra polymers in aerospace: concrete examples Benefits of ultra polymers: enhanced performance, durability and cost-efficiency
Additionally, stitch-bonded non-crimp fabrics (NCFs) provide manufacturers and asset owners even more ways to gain a competitive advantage with products built specifically for the environments and loading conditions in which they will be utilized. Join Vectorply Corporation and Creative Composites Group (CCG) for this in-depth webinar detailing the process of engineering NCFs to build composite parts that will stand the test of time. Unlike steel, concrete and wood, composite NCFs can be optimized utilizing various fiber types, architectures and substrates to achieve the specific goals of their application efficiently. High corrosion resistance, strength and stiffness, and longevity can all be accomplished with custom-designed laminates for these heavily abused applications. Vectorply Vice President of Engineering Trevor Gundberg and Creative Composites Group Chief Sales Officer Dustin Troutman will share their industry-leading expertise on the process of laminate design and part production. Attendees can expect to learn when to use composite NCFs in their production process and the wide range of fiber-reinforced plastic (FRP) composites that Creative Composites Group produces for the industrial and infrastructure markets. Whether you want to learn more about utilizing NCFs in your production process or why CCG’s extensive product line may be the choice for your project, this webinar is the place learn the process and how to take the next steps. Agenda: Distinct advantages of non-crimp fabrics versus alternative materials How to design laminates for specific processes such as pultrusion and infusion Real-world success spotlights of NCFs in industrial applications
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
"The production cycle is nearly three times faster with MIT than with a single mold, leading to a much quicker capital investment payback period, and obviously much less expense than multiple sets of RTM tools," explains Harper. Hot molds often play havoc with gel coat, but the fact that a cool MIT insert can be gel coated offline and placed in the heated bolster means the mold base can maintain its temperature, eliminating cooling time delays. The MIT process has been used successfully on fairly large — up to 23m2/240 ft2 — general molding parts using vacuum lifting frames to facilitate lifting the skins.
Program will focus on sustainable, next-gen wing solutions, including in wing design and manufacturing and advancements in carbon fiber-reinforced composite materials.
The good news is that all three of these material families—PE, PP, and POM—follow the same general relationship between modulus and temperature in the region between ambient conditions and the onset of crystal melting. The behavior can be approximately captured as two different slopes, and within each segment the trend is nearly linear. Figure 3 shows modulus vs. temperature plots for three different HDPEs and Fig. 4 shows the same data for three different POM copolymers. Note that in this last graph the glass transition is shown with the accompanying rapid change in modulus. But it occurs at -75 C (-103 F), a temperature we will never see on the floor of a molding plant.
Mixed in among thought leaders from leading suppliers to injection molders and mold makers at the 2023 Molding and MoldMaking conferences will be molders and toolmakers themselves.
Some aerospace part allowables, however, simply cannot be met with LRTM or MIT, and more traditional tooling is sometimes the best answer. Plastech also has designed, built and supplied highly accurate composite RTM tools with steel backup structure for projects like the ASRAAM missile manufactured for the U.K. Ministry of Defence by MBDA UK Ltd. (formerly Matra BAE Dynamics), as well as matched metal RTM molds for other high-rate production parts.
The composites industry is increasingly recognizing the imperative of sustainability in its operations. As demand for lightweight and durable materials rises across various sectors, such as automotive, aerospace, and construction, there is a growing awareness of the environmental impact associated with traditional composite manufacturing processes.
Performing regular maintenance of the layup tool for successful sealing and release is required to reduce the risk of part adherence.
DSC results for a highly nucleated PP, evidenced by the peak recrystallization temperature above 130 C. This peak temperature can vary by as much as 30° C across different grades of PP, but it will rarely exceed the value shown here.
Increasingly, prototype and production-ready smart devices featuring thermoplastic composite cases and other components provide lightweight, optimized sustainable alternatives to metal.
Introduced by Zeiger and Spark Industries at the PTXPO, the nozzle is designed for maximum heat transfer and uniformity with a continuous taper for self cleaning.
Low-melt polyaryletherketone (LMPAEK) unidirectional tapes provide outstanding thermal and fire protection, demonstrating their effectiveness through rigorous testing. These tapes are fire, smoke and toxicity compliant with FAR25.853 and meet OSU Heat Release Rate standards. The tapes were tested under ISO 2685/AC 20-135 Change 1, meeting the fireproof criteria. Additionally, they met UL 2596 requirements for battery thermal runaway tests. These tapes are crucial for high-temperature applications showcasing their resilience and safety in both aerospace and automotive applications. Part of a broader range that includes films and compounds, Victrex LMPAEK materials are valued for their excellent processability and weldability. They offer versatile solutions for complex needs beyond traditional structural parts, such as: thermal runaway and lightning strike protection, heat sinking, and intricate bracketry. Victrex LMPAEK materials facilitate automation and high-rate production while addressing performance and sustainability challenges. With reduced environmental impact, lower weight and cost-efficiency, they meet the evolving demands of the transportation industry and support innovative design solutions. Agenda: Introduction to LMPAEK ecosystem, highlighting unidirectional tapes Thermal and fire protection performance: applications and benefits Material forms and processability Sustainability and efficiency Conclusion and future innovations
"By working together with the part designers, you can develop a tool that can be modified later if changes are needed, which saves tremendous cost. Second, once the tool and part size are defined, the toolmaker can buy the tooling materials ahead of time, essentially sharing some of the cost risk with the customer, so that as soon as the CAD data is released, we can start milling," he explains.
Radius manufactured the prototypes and the parts required for part certification; the actual production rate should be about 200 parts per year. The reduction in part count translated to cost savings that have offset the cost of the tooling development. The innovative tooling design was recognized as the award winner in the "Air Transport" category at the recent JEC Composites Show in Paris (April 1-3).
Join KraussMaffei for an insightful webinar designed for industry professionals, engineers and anyone interested in the manufacturing processes of PVC pipes. This session will provide a comprehensive understanding of the technology behind the production of high-quality PVC pipes: from raw material preparation to final product testing. Agenda: Introduction to PVC extrusion: overview of the basic principles of PVC pipe extrusion — including the process of melting and shaping PVC resin into pipe forms Equipment and machinery: detailed explanation of the key equipment involved — such as extruders, dies and cooling systems — and their roles in the extrusion process Process parameters: insight into the critical process parameters like temperature, pressure and cooling rates that influence the quality and consistency of the final PVC pipes Energy efficiency: examination of ways to save material and energy use when extruding PVC pipe products
Jetcam’s latest white paper explores the critical aspects of nesting in composites manufacturing, and strategies to balance material efficiency and kitting speed.
"It's a belt-plus-suspenders approach that reduces risk," he explains. "The inserts help you ensure complete wetout — they can either be manually operated or controlled by computer in a defined sequence that facilitates the resin front." The DRIV RTM concept was used successfully by Lockheed Martin to mold a demonstration vertical stabilizer part for the Joint Strike Fighter (JSF) aircraft program. The part's venting layout was actually modeled by the University of Delaware's Center for Composite Materials, which demonstrated that the vent inserts improved the resin flow front geometry. With better wetout at lower injection pressure, less material was needed for the mold itself, which reduced overall tooling cost. Clamping pressure requirements also were lower.
In a time where sustainability is no longer just a buzzword, the food and beverage packaging industry is required to be at the forefront of this innovation. By adopting circular packaging processes and solutions, producers can meet regulatory requirements while also satisfying consumer demand and enhancing brand reputation. Join Husky to learn more about the broader implications of the circular economy — as well as how leading brands are leveraging this opportunity to reduce costs, increase design flexibility and boost product differentiation. Agenda: The cost and operational benefits of embracing circularity Key materials in circular packaging — including rPET and emerging bioplastics How to design a circular food and beverage package Strategies for selecting sustainable closures to future-proof packaging solutions Optimization and streamlining of production processes for enhanced efficiency How Husky Technologies can enable your sustainable success
Closed mold processes have many advantages over open molding. In this knowledge center, learn the basics and vital tools needed to produce parts accurately.
Tier-1 aerostructures manufacturer Spirit AeroSystems developed an out-of-autoclave (OOA), one-shot resin infusion process to reduce weight, labor and fasteners for a multi-spar aircraft torque box.
Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.
"The mandrels were designed so that closing the tool would force them into their final position and overcome the natural bulk of the inner braids," explains Emmanuel Pons, Radius Engineering's project manager. "Because of details shaped into the leading edge, the first mandrel was split to prevent any locking of the tooling."
"The implementation of VISUAL Manufacturing helped get our scheduling and job costing under control," says UCAR's Bill Kansky, vice president of finance. "It has also helped meet our customers' demanding specifications and increased on-time deliveries to 98 percent."
CompositesWorld’s CW Tech Days: Infrastructure event offers a series of expert presentations on composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.
Join this webinar to explore the transformative benefits of retrofitting your existing injection molding machines (IMMs). Engel will guide you through upgrading your equipment to enhance monitoring, control and adaptability — all while integrating digital technologies. You'll learn about the latest trends in IMM retrofitting (including Euromap interfaces and plasticizing retrofits) and discover how to future-proof your machines for a competitive edge. With insights from industry experts, it'll walk you through the decision-making process, ensuring you make informed choices that drive your business forward. Agenda: Maximize the value of your current IMMs through strategic retrofitting Learn how to integrate digital technologies to enhance monitoring and control Explore the benefits of Euromap interfaces and plasticizing retrofits Understand how retrofitting can help meet new product demands and improve adaptability Discover how Engel can support your retrofitting needs, from free consultations to execution
Formnext Chicago is an industrial additive manufacturing expo taking place April 8-10, 2025 at McCormick Place in Chicago, Illinois. Formnext Chicago is the second in a series of Formnext events in the U.S. being produced by Mesago Messe Frankfurt, AMT – The Association For Manufacturing Technology, and Gardner Business Media (our publisher).
Foundational research discusses the current carbon fiber recycling landscape in Utah, and evaluates potential strategies and policies that could enhance this sustainable practice in the region.
In this three-part collection, veteran molder and moldmaker Jim Fattori brings to bear his 40+ years of on-the-job experience and provides molders his “from the trenches” perspective on on the why, where and how of venting injection molds. Take the trial-and-error out of the molding venting process.
Stephen Heinz, vice president of R&I for Syensqo delivered an inspirational keynote at SAMPE 2024, highlighting the significant role of composite materials in emerging technologies and encouraging broader collaboration within the manufacturing community.
Performing fundamental maintenance inspections frequently assures press longevity and process stability. Here’s a checklist to help you stay on top of seven key systems.
The relatively high cost of matched metal molds is usually justified only for high production runs, small parts or well-funded projects. But toolmakers are striving to overcome cost issues with innovations like modular tooling, removable inserts that can be configured for multiple parts, and alternative materials and approaches that reduce capital investment. For example, one tooling manufacturer, Dangar Engineering & Manufacturing Inc. (Newbury Park, Calif., U.S.A.), has developed a multipart automated RTM tooling concept with molds that slide on rails to eliminate mold handling. "We need a fast production method to compete against aluminum," says Dangar's president Dan Woods.
Given the countless possibilities for the design and fabrication of composite parts, the industry is counting on new innovations in the tooling to realize those parts. "People are looking for alternatives to aluminum, steel and titanium materials, particularly in the aerostructures industry, where the properties of composites bring so many advantages," says van den Berg. "The tooling industry will benefit from that."
An on-demand mapping tool for anisotropic materials and polymer material fracture prediction model, i-Lupe, aims to help predict impact, crash behaviors.
An overview of ASTM Standard Guide D8509, and its coupon-level mechanical testing of design properties for analyzing composite bolted joints.
"We're not in the business of asking our customers to take big risks," says Rich Petrovich, president of North Coast Tool and Mold Corp. (NCTM, Cleveland, Ohio, U.S.A.). "Innovations are good, but they have to be proven."
While the major correction in PP prices was finally underway, generally stable pricing was anticipated for the other four commodity resins.
With advocacy, communication and sustainability as three main pillars, Seaholm leads a trade association to NPE that ‘is more active today than we have ever been.’
UCAR Composites Inc. (Irvine, Calif., U.S.A.) is another traditional aerospace tooling supplier that has streamlined its operation and reduced tooling lead times and costs with an innovative software approach. The company uses an integrated software management tool called VISUAL Enterprise from Lilly Software Assoc. Inc. (Hampton, N.H., U.S.A.) that combines manufacturing and quality functions for substantially reduced overhead expenses. The program tracks and prioritizes each tooling projection, estimated delivery times and production schedules, as well as quality issues for ISO 9000 compliance.
The ITHEC 2024 will take place from the 9 to 10 October 2024 in Bremen, Germany. At the 7th International Conference, more than 300 participants from around the world will be presenting and discussing newest scientific results, meet leading international specialists, share their expertise and start business co-operations in the field of thermoplastic composite technologies. The international exhibition will feature 40+ exhibitors showcasing all steps of the supply-chain. Be it materials, machines, testing, processes, or solutions. By combining the exhibition and the conference ITHEC is further fostering the inter-connectivity between science and industry.
Second quarter started with price hikes in PE and the four volume engineering resins, but relatively stable pricing was largely expected by the quarter’s end.
The tool, made with vacuum-cast and anodized M1 aluminum mold plate, has a top and bottom half with outer molding line (OML) machined into each half. Anodized aluminum was selected for its surface hardness and its low specific heat and high conductivity, which permits faster heating than steel. It also has good vacuum integrity and can withstand RTM resin injection pressures. The mold includes an inner set of six aluminum mandrels fixtured together at their ends to control their positions relative to each other and to the OML. The 3.6m/11.7-ft long by 0.6m/2.3-ft wide part was designed so that braided sock preforms, supplied by A&P Technology Inc. (Cincinnati, Ohio, U.S.A.), could be fitted over each mandrel to form the flap's internal spar webs. Above and below the spars, tackified carbon fabric from HexcelHexcel Composites (Dublin, Calif., U.S.A.) forms the upper and lower skins. The approximately ten-fold difference in coefficient of thermal expansion (CTE) between the aluminum mold and mandrels and the carbon part is actually a design benefit — aluminum's much greater shrinkage makes it easy to remove the mandrels after cool down.
The Marservis PROeco is a mass transportation marine vessel using Bcomp natural fiber for interior parts in place of standard materials.
When, how, what and why to automate — leading robotics suppliers and forward-thinking moldmakers will share their insights on automating manufacturing at collocated event.
In the Automated Composites Knowledge Center, CGTech brings you vital information about all things automated composites.
Directed resin injection and venting (DRIV) technology is another recent RTM tooling development from NCTM. In the DRIV tool, strategically placed mold inserts function as vents, allowing entrapped air to escape from the preform in a sequenced manner, which facilitates resin flow and wetout throughout the part cavity.
The composite tubes white paper explores some of the considerations for specifying composite tubes, such as mechanical properties, maintenance requirements and more.
Recoat temperature, part orientation and bead geometry are some key design variables to consider for a successful and reliable large-format additive manufacturing (LFAM) process.
This means that as they crystallize they release a significant amount of energy into the system as heat. This represents an additional thermal load above and beyond the requirement to simply lower the temperature of the material. This additional heat must be carried away by the cooling circuitry in the tool and will slow the development of modulus in the initial stages of solidification.
Herone, Spiral RTC, Teijin Carbon Europe and Collins Aerospace Almere recycle A350 thermoplastic composite clips/cleats waste into rods for the all-thermoplastic composite Multifunctional Fuselage Demonstrator’s crown.
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
A recent challenge was the tool set for manufacturer North American Bus Industries Inc. (NABI, Woodland Hills, Calif., U.S.A.), which fabricates a 45-ft long, two-axle, low-floor monocoque bus structure with no separate metal chassis. Axles and suspension components attach directly to the CompoBus composite body. To get the necessary stiffness, the bus body had to be made almost entirely as a one-piece construction. Janicki produced a six-piece carbon fiber/epoxy composite tool that bolts together for layup and resin infusion, but disassembles for storage.
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
Long an advocate of cost-effective, low-hassle composite tooling, John Janicki, president of Janicki Industries (Sedro Woolley, Wash., U.S.A.), points out that, particularly for prototyping, the requirements of the tool (temperature performance, accuracy) must be reduced to keep tooling costs in line. "Our customers who are bidding on major programs like the Joint Strike Fighter are interested in new tooling technology, but in the end, most go for the tried and true, which often ends up being metallic tooling like Invar," states Janicki. "They all recognize the problems with Invar — like the cost, the lead times, the thermal mass, and the requirements for support infrastructure to move the tools around. One of the beauties of composite tooling is that it can accommodate any part shape — it opens up new opportunities for designers."
Gifted with extraordinary technical know how and an authoritative yet plain English writing style, in this collection of articles Fattori offers his insights on a variety of molding-related topics that are bound to make your days on the production floor go a little bit better.
ATS recently completed a tool set for Airbus Industrie that includes 64 tools for the A380 wing spoilers. The set includes 32 upper and lower skin layup tools in tooling steel, with 16 associated assembly jigs. Van den Berg reports that ATS is experimenting with new adjustable tools with thin face sheets made with Invar plate stock.
A big advantage with RTM is part consolidation — the ability to produce a complex component as a single molded composite part rather than an assembly of multiple parts typically required in metal. Radius Engineering Inc. (Salt Lake City, Utah, U.S.A.), involved with RTM tooling development since the mid-1980s, recently molded a prototype carbon composite wing flap that will replace a multipiece aluminum assembly on the Bombardier CRJ aircraft. Because the flap can be RTM'd as a single component, it is cost-competitive with the aluminum version, and the part's excellent surface accepts paint without the need for additional surface treatment.
New aircraft is expected to deliver wind turbine blades from 105 meters up to expand the reach of wind energy and achieve global climate goals.
While the melting process does not provide perfect mixing, this study shows that mixing is indeed initiated during melting.
Across the show, sustainability ruled in new materials technology, from polyolefins and engineering resins to biobased materials.
CW Tech Days are virtual events dedicated to the topics impacting the composites industry today. Access past event recordings and register for upcoming Tech Days.
Arris presents mechanical testing results of an Arris-designed natural fiber thermoplastic composite in comparison to similarly produced glass and carbon fiber-based materials.
Core Technology Molding turned to Mold-Masters E-Multi auxiliary injection unit to help it win a job and dramatically change its process.
While laboratory tests are helpful in determining how polymers behave, you must remember the fundamental differences between laboratory measurements and the real world of plastic processing. Let’s examine semi-crystalline polymers here.
Analyzing structural resonance of the aircraft under various loads becomes a critical step in obtaining flight certification.
Advanced Engineering is the UK’s largest annual gathering of engineering and manufacturing professionals. The event will help you to source new suppliers, network, build connections and learn about the latest industry developments all in one place. Get involved and exhibit alongside 400+ exhibitors offering solutions and products across all industries and sectors to help improve your productivity and inspire creativity. With over 9,000+ of your peers due to attend and ready to network with and inspire you, this is the event you can’t afford to miss!
Janicki is trying to perfect a composite tooling system fabricated by resin infusing multiple plies of dry carbon fiber tooling fabric on a pattern to create a solid laminate approximately 19-mm/0.75-inch thick. A backup structure is attached and the entire assembly is postcured at 177°C/350°F. During the postcure, the tool moves due to resin shrinkage and "spring" — a change in the curvature of a thick laminate placed on a contour or radius. Rather than attempt to constrain the movement, the company machines the cured face to final tolerance. By using infusion to create the tool, air is forced out, resulting in less tool porosity and, therefore, a better surface finish. Janicki reports that while still under development, the method is rapid and cost-effective, and will provide aerospace-grade tools that are lighter than metallic tools, with faster thermal transfer rates and the same CTE as the parts currently being produced.
Over the last 8 months, Archer Aviation has completed a total of 402 test flights with its composites-intensive aircraft, adding to key milestones.
In this collection of content, we provide expert advice on welding from some of the leading authorities in the field, with tips on such matters as controls, as well as insights on how to solve common problems in welding.
If you find this concept difficult, try hooking up a thermocouple to a mold near the cavity. Set the water temperature and start making parts in an amorphous material like polystyrene. You will observe a small temperature rise as the material enters the mold for each shot. The temperature will typically return to its original point by the time the part is ejected. Then change to a PP or a PE but do not alter the melt temperature. You will observe a much larger temperature rise as the semi-crystalline material fills the tool. This is caused by the heat release associated with crystallization that is illustrated by the DSC curve in Fig. 1.
CompositesWorld's Carbon Fiber conference offers you cutting-edge information and access to industry experts in streamlining manufacturing costs, market outlooks and forecasting, and more. You will make invaluable contacts as you meet and network with the industry's most innovative and influential leaders at Carbon Fiber. __PRESENT
Base Materials introduces a high-performance, toughened epoxy tooling board designed for thermoforming and vacuum forming processes, direct-to-part applications and more.
"With DRIV, manufacturers can produce larger and more intricate parts, with higher fabric content and high viscosity resin," says Petrovich. The method can be applied to any type of liquid molding, including vacuum-assisted resin transfer molding (VARTM) and other infusion processes.
This sidebar to CW’s August 2024 feature article reviews this technology for more efficient composites manufacturing and why it aligns with Koridion active core molding.
Let’s examine the behavior of semi-crystalline materials that never reach their glass-transition temperature as they cool.
CompositesWorld is the source for reliable news and information on what’s happening in fiber-reinforced composites manufacturing. About Us
RTM methods have multiplied over the past 15 years, as manufacturers have recognized the benefits of the process. A two-part, machined RTM mold delivers a smooth surface finish on both sides of the part and can produce complex, detailed, near-net shapes at a high rate with minimal post-production trimming. The fact that the resin is delivered under pressure with the mold halves clamped together (or held together in a press) means parts are consistent, repeatable, dimensionally stable and well-consolidated, with high fiber content (50 to 70 percent) and excellent void control (usually less than 0.2 percent). For high-performance parts made with higher-viscosity toughened resins, molds are usually heated (accomplished with heated oil galleys) and resin injection pressure is controlled with a meter/mix injection machine. Raw material costs are generally less than those for hand layup because dry preforms are used rather than traditional prepregs. Cycle time can range from two to three hours — shorter than typical autoclave cure cycles.
Aerospace manufacturer joins forces with composite materials company to achieve sustainable manufacturing practices that overcome traditional composite layup tooling.
After successfully introducing a combined conference for moldmakers and injection molders in 2022, Plastics Technology and MoldMaking Technology are once again joining forces for a tooling/molding two-for-one.
The general relationship of modulus to temperature on these three HDPEs can be approximately captured as two different slopes, and within each segment the trend is nearly linear.
technotrans says climate protection, energy efficiency and customization will be key discussion topics at PTXPO as it displays its protemp flow 6 ultrasonic eco and the teco cs 90t 9.1 TCUs.
"We've proven that with peripheral injection, you can inject resin four times faster than with a single inlet," he states. "But, pressure is the killer — if you over pressurize, you will simply warp the lighter, upper counter mold and end up with a too-thick component, which can exotherm and wreck the tooling."
This collection features detail the current state of the industry and recent success stories across aerospace, automotive and rail applications.
That sentiment is echoed by all the companies interviewed for this article, from aerospace tooling suppliers to general industry moldmakers. "The bitterness of poor quality remains long after the sweetness of low price is forgotten," states Remco van den Berg, director of sales at Advanced Tooling Systems (ATS, Almelo, The Netherlands).
Kennametal will cover the influence of different composite materials characteristics on drilling performance and how to optimize the process. Agenda: Who is Kennametal? Hole making challenges in composite materials Innovations for hole making applications Upcoming events and academic partnerships
The first project is underway to recover carbon fiber used in an A330-200 aircraft, which will then be regenerated for other end uses by HRC.
Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.
Radius achieved good wetout using a single resin inlet at the center of the tool's leading edge and a single vacuum port at the center of the rear, injecting standard Hexcel RTM 6 epoxy resin at 100 psi. The tool featured a resin distribution "weir" that causes resin to flow along the tool's entire front edge, so that the part is impregnated across the broadest possible front, with the resin path proceeding from the leading edge to the trailing edge.
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Explore the cutting-edge composites industry, as experts delve into the materials, tooling, and manufacturing hurdles of meeting the demands of the promising advanced air mobility (AAM) market. Join us at CW Tech Days to unlock the future of efficient composites fabrication operations.
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
Ultradent's entry of its Umbrella cheek retractor took home the awards for Technical Sophistication and Achievement in Economics and Efficiency at PTXPO.
Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.
Knowing the fundamentals for reading drawings — including master ply tables, ply definition diagrams and more — lays a foundation for proper composite design evaluation.
A collaboration between show organizer PLASTICS, recycler CPR and size reduction experts WEIMA and Conair recovered and recycled all production scrap at NPE2024.
A combination of Airtech’s 3D printing materials and Ascent’s production capabilities aim to support increased use of composite additive tooling in spaces like defense and aerospace.
The composites industry plays a crucial role in developing lightweight and durable materials for a range of applications, including those critical to national defense. One key focus area is the development of advanced structural materials and manufacturing technologies that support next-generation space, missile and aircraft systems for the U.S. Department of Defense (DOD). ARC Technologies LLC (ARC), a division of Hexcel Corporation, based in Amesbury, Massachusetts, is a provider of advanced composites structures, specialty materials and other unique products that provide the U.S. Department of Defense with advanced capabilities to protect service members while in harm’s way. This team’s specialty is to understand a specific need from a program office, PEO, platform manufacturer or other offices within the DOD. With that understanding, the team can design a solution, develop a prototype for test and evaluation, perform extensive in-house testing — including electromagnetic, environmental and structural testing — and then partner with the customer through platform evaluation. The Hexcel Amesbury division has a team of engineers on staff, including mechanical, chemical, electrical and research and development specialists that can provide design, testing and manufacturing capabilities to service customer requirements from concept through production. This presentation will illustrate capabilities in advanced composites and other specialty materials structures, focusing on the Hexcel Amesbury team's niche in electromagnetic signature reduction and other unique capabilities.
A homogenous melt is required for consistent part quality, but achieving it requires balancing a number of factors, including barrel usage and temperature as well as screw speed, backpressure and residence time. Learn how to prepare your melt for molding success in this two-part series.
Six U.S. companies have proven their recycling technologies for composites and rare earth elements, and will be supported for relevant scale demonstration and validation.
Whether you’re exploring new applications or seeking to gain a foothold in emerging markets, Carbon Fiber 2024 is where you’ll discover the insights and connections needed to shape your business strategy. Register now.
Last month I showed analytical results that illustrate how a nylon 6 crystallizes as it cools. These types of results, generated by a technique known as differential scanning calorimetry (DSC), are used as data inputs by the simulation software that seeks to predict cycle time. Figure 1 shows this same DSC cooling curve for a PP. This particular grade of PP is highly nucleated, as indicated by the peak recrystallization temperature above 130 C (266 F). This peak temperature can vary by as much as 30° C (54° F) across different grades of PP, but it will rarely exceed the value shown here.
Janicki Industries also produced the composite tools used by AAR Composites (Clearwater, Fla., U.S.A.) to make the bodies for the Las Vegas rapid transit monorail system, in Nevada. The E-glass/epoxy composite tools with steel backup structures incorporated details like window and door cutouts, which allowed net layups without the need for postcure cutting and finishing.
August 29-30 in Minneapolis all things injection molding and moldmaking will be happening at the Hyatt Regency — check out who’s speaking on what topics today.
"Obviously, when you're making a 40m long part, autoclave cure isn't an option," says Ridgard. "With the ZPREG material, during cure, the dry areas between the resin strips provide escape paths for the air, which results in very low porosity and, consequently, much better surface finish."
Five industry pros with more than 200 years of combined molding experience provide step-by-step best practices on mounting a mold in a horizontal injection molding machine.
As the composites industry has matured, so has the tooling industry that underpins composites fabrication. But toolmakers perennially find themselves on the horns of a dilemma — clients demand quality tools that deliver dimensionally accurate, high-quality parts, but balk at the costs and lead times necessary to produce them.
Sustainability continues to dominate new additives technology, but upping performance is also evident. Most of the new additives have been targeted to commodity resins and particularly polyolefins.
The Autoclave Scheduler is designed to increase autoclave throughput, save operational costs and energy, and contribute to sustainable composite manufacturing.
HPC's January/February 2001 issue (p. 20), reported that epoxy-based modeling pastes were being used not only for models, but inexpensive tools, as well. One example was The Boeing Co.'s (Chicago, Ill., U.S.A.) low-cost tooling for composites (LCTC) system. LCTC employs Vantico's (East Lansing, Mich., U.S.A.) Ren RP4040 syntactic epoxy tooling paste patties, which are pressed into a machined aluminum honeycomb substructure, and then cured and machined to final contour. Formglas (Toronto, Ontario, Canada) has since perfected the concept, proving that LCTC molds can be quickly fabricated directly from CAD data and autoclave cured for multiple part runs, with significantly lower lead times and cost. "It's the perfect tool for rapid prototyping of new structures or short-run operations," says Formglas technician Steven Burke.
The composites-intensive VTOL platform is next expected to undergo a series of test flights in various conditions to validate its performance, safety and reliability, leading up to eventual certification.
Multiple speakers at Molding 2023 will address the ways simulation can impact material substitution decisions, process profitability and simplification of mold design.
And we haven't even begun to touch on the truly different tooling approaches available, such as soluble tooling from Advanced Ceramics Research Inc. (Tucson, Ariz., U.S.A.); a reusable ceramic material that changes from a liquid to a solid state to quickly form a tool, developed by 2Phase Technologies Inc. (Dayton, Nev., U.S.A.); Roctool SA (Le Bourget du Lac, France) rapid resistive heating and inductive heating molding concepts; a foamed carbon material from Touchstone Research Laboratory Ltd. (Triadelphia, W. Va., U.S.A.); and a new composite tooling concept soon to be introduced by Scion Industries LLC (Ft. Collins, Colo., U.S.A.).
Formnext Chicago is an industrial additive manufacturing expo taking place April 8-10, 2025 at McCormick Place in Chicago, Illinois. Formnext Chicago is the second in a series of Formnext events in the U.S. being produced by Mesago Messe Frankfurt, AMT – The Association For Manufacturing Technology, and Gardner Business Media (our publisher).
Even for suppliers of more traditional metallic tooling, cost-effectiveness sometimes can be secured through changes in customer relationships, says van den Berg of ATS. "How can we reduce tooling costs? Get the tooling supplier into the process early on," he states. "We and other tooling houses have invested in engineering expertise, including CATIA5. We can do tooling design more cost-effectively than the OEMs."
Source: Radius EngineeringThe top of the RTM mold is lifted away from the molded flap. Note that the mold weight requires lifting infrastructure.
Advanced Composites Group (ACG, Tulsa, Okla., U.S.A. and Heanor, Derbyshire, U.K.) points to its new ZPREG prepreg material as a means of making composite tooling more cost-effective. ZPREG, originally developed for making parts, consists of two layers of reinforcement enclosing the resin. Rather than a continuous layer, the resin is applied in approximately 12.5 mm/0.5-inch wide strips, with dry strips between. But, says ACG's aerospace sector manager Chris Ridgard, it can be used to make high-temperature composite tooling with an excellent surface finish without an autoclave. The company recently completed a 40m/130-ft long wind turbine blade tool in carbon fiber/epoxy ZPREG.
In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.
Successfully starting or restarting an injection molding machine is less about ticking boxes on a rote checklist and more about individually assessing each processing scenario and its unique variables.
Join Wittmann for an engaging webinar on the transformative impact of manufacturing execution systems (MES) in the plastic injection molding industry. Discover how MES enhances production efficiency, quality control and real-time monitoring while also reducing downtime. It will explore the integration of MES with existing systems, emphasizing compliance and traceability for automotive and medical sectors. Learn about the latest advancements in IoT and AI technologies and how they drive innovation and continuous improvement in MES. Agenda: Overview of MES benefits What is MES? Definition, role and brief history Historical perspective and evolution Longevity and analytics Connectivity: importance, standards and integration Advantages of MES: efficiency, real-time data, traceability and cost savings Emerging technologies: IoT and AI in MES
Learn about sustainable scrap reprocessing—this resource offers a deep dive into everything from granulator types and options, to service tips, videos and technical articles.
Despite price increase nominations going into second quarter, it appeared there was potential for generally flat pricing with the exception of a major downward correction for PP.
Before we leave this discussion, there is one more class of materials that we need to address—elastomers. Materials like TPEs, TPUs, and flexible PVC are all meant to function above their Tg and many of these materials develop very little stiffness at and above room temperature. Consequently, we cannot measure a heat deflection temperature that can be used to fulfill our rule of thumb. If we did measure this property, we would find that it would be below room temperature, given the way we define HDT today. And yet we make parts from these materials every day without using cryogenic conditions in our molds. How can this happen? We will consider this in our next article.
Mike Sepe has authored more than 25 ANTEC papers and more than 250 articles illustrating the importance of this interdisciplanary approach. In this collection, we present some of his best work during the years he has been contributing for Plastics Technology Magazine.
In this graph of modulus vs. temperature for three different POM copolymers, the glass transition is shown with the accompanying rapid change in modulus. But it occurs at a cryogenic temperature that we will never see on the floor of a molding plant.
EU project will develop bio-based, repairable and recyclable vitrimer composites and advanced sensors for highly reliable, sustainable wind blades.
In this collection of articles, two of the industry’s foremost authorities on screw design — Jim Frankand and Mark Spalding — offer their sage advice on screw design...what works, what doesn’t, and what to look for when things start going wrong.
It’s generally assumed that once the temperature reaches the baseline to the left of the recrystallization exotherm, the material has solidified and can be ejected. For this material, this occurs at approximately 120 C (248 F). But an examination of a DMA curve providing the relationship between modulus and temperature shows that it is not this simple. Figure 2 shows this behavior. At 120 C this material has a modulus of approximately 200 MPa (29 kpsi). At room temperature it will reach a value 10 times greater. The development of the modulus in this PP, and in all PPs, is gradual and the actual temperature at which ejection can take place is therefore somewhat uncertain. If we were to fall back on the original guideline that started this discussion, the heat deflection temperature, we would find that the published value is 88 C (190 F) when tested at 66 psi (0.455 MPa) under the ASTM method. But the ISO technique gives a value of 79 C (174 F). And if the test is performed at 264 psi (1.8 MPa) the result is 50 C (122 F). Which one do we use?
Plastics Technology’s Tech Days is back! Every Tuesday in October, a series of five online presentations will be given by industry supplier around the following topics: Injection Molding — New Technologies, Efficiencies Film Extrusion — New Technologies, Efficiencies Upstream/Downstream Operations Injection Molding — Sustainability Extrusion — Compounding Coming out of NPE2024, PT identified a variety of topics, technologies and trends that are driving and shaping the evolution of plastic products manufacturing — from recycling/recyclability and energy optimization to AI-based process control and automation implementation. PT Tech Days is designed to provide a robust, curated, accessible platform through which plastics professionals can explore these trends, have direct access to subject-matter experts and develop strategies for applying solutions in their operations.
This Knowledge Center provides an overview of the considerations needed to understand the purchase, operation, and maintenance of a process cooling system.
American Bureau of Shipping (ABS) certifies use of jointly developed CFRP repair technique on FPSO and FSO industrial systems, addressing traditional steel restoration challenges.
Take a deep dive into all of the various aspects of part quoting to ensure you’ve got all the bases—as in costs—covered before preparing your customer’s quote for services.
This month’s resin pricing report includes PT’s quarterly check-in on select engineering resins, including nylon 6 and 66.
"More economical molding methods are needed if the composite industry is to stay competitive with steel, aluminum and thermoformed plastic parts," says Harper. His firm has developed several innovations, including Multiple Insert Tooling (MIT) RTM, and has helped popularize a process known as Light RTM (LRTM), providing training, tool design and ancillary accessories and equipment.
"Traditional liquid molding relies on uncontrolled resin flooding, with single point, edge-of-part venting," says DRIV inventor Petrovich. "Unfortunately, this type of approach tends to result in dry spots. Manufacturers increase injection pressure to improve wetout, but this can cause fabric movement and mold deflection." Further, says Petrovich, mold mass and clamping pressure are increased, all of which tend to limit the size and complexity of RTM parts. With the DRIV concept, pockets are machined into the inner mold surface; the pockets, either circular or oval-shaped depending on the part, contain small holes drilled through the mold thickness. Tiny vented inserts with serrated edges are then placed in the pockets as dictated by the part geometry. Air can vent through the insert into the pocket and out of the mold, but the serrations prevent resin flow. Or, says Petrovich, the serrations can be machined larger to allow telltale resin flow in a particular segment of the part. The inserts and pockets are designed so that no witness marks are created in the part.
If we fall back on the rule of thumb that the part can be ejected at 80% of the HDT, where does that leave us? If we select 50 C and ignore the importance of using the absolute temperature (Kelvin) scale we get an answer of 40 C (104 F). To those who have been molding PP parts for a while, this probably looks like a reasonable number. Of course, if we treat temperature the way all the other sciences do and use the absolute scale, we end up with a value well below room temperature. (I will let you work out the math for yourself). The question becomes, how can an ejectable temperature be determined if there are no data in the simulation software (or the back-of-the napkin calculation) that relate the stiffness of the material to temperature?
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
Van den Berg points to the automotive industry as a model for what is starting to occur in aerospace and other industries. Typically the OEM shifts responsibility for supplying parts to the first-tier suppliers. For example, Mercedes designs a "marketing model" — a new convertible, for example — as a 3-D surface, and leaves the details of how the various parts will be tooled and assembled up to the suppliers. In order to meet the hard deadline for producing parts, the supplier and tool designer must work in concert, in a process van den Berg feels is truly "concurrent engineering."
GETTING A QUOTE WITH LK-MOULD IS FREE AND SIMPLE.
FIND MORE OF OUR SERVICES:


Plastic Molding

Rapid Prototyping

Pressure Die Casting

Parts Assembly
