
Flexible Packaging Suppliers: The Top 21 - flexible plastic molding
Author:gly Date: 2024-09-30
How a facility is set up and attendant decisions depend on the type of markets you are serving, the type of parts you need to mold, and what your customers (internal or external) dictate you have. Right at the start, also consider future expansion, either of the plant itself or of production floor space. While a 10,000-sq-ft facility might seem enormous when it's empty, it can become crowded when 10 presses and auxiliary equipment are installed. A rule of thumb is to lease or purchase a building twice the size you figure you'll need to start.
A report on the demand for hydrogen as an energy source and the role composites might play in the transport and storage of hydrogen.
Performing regular maintenance of the layup tool for successful sealing and release is required to reduce the risk of part adherence.
Interior applications. Culture iN’s flax fiber and plant-based PLA Varian product were developed specifically for more sustainable, aesthetically pleasing interior applications, like the pictured light fixture. Photo Credit: Culture iN
While most molders accommodate the requirements of their customers, some question the necessity of all the quality bells and whistles like SPC, SQC, ISO 9000, and Six Sigma (a term coined by Motorola that refers to a quality level of three defective parts per million), given the variables of the molding process.
Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.
Explore the cutting-edge composites industry, as experts delve into the materials, tooling, and manufacturing hurdles of meeting the demands of the promising advanced air mobility (AAM) market. Join us at CW Tech Days to unlock the future of efficient composites fabrication operations.
“Technically, if you look at the literature, one type of [natural fiber] may have more resistance and one has higher modulus, but right now, talking about the differences isn’t the right approach, because none of them are totally optimized for use in composites,” Juillard says. “We have some good products now, but there’s still a lot of work to do. Choosing one over the other isn’t about processing or properties. It’s about supply chain, and which material you can get at which cost.”
Celebrating National Composites Week 2024, CW looks at how composites are being used to provide the next generation of energy.
CW’s editors are tracking the latest trends and developments in tooling, from the basics to new developments. This collection, presented by Composites One, features four recent CW stories that detail a range of tooling technologies, processes and materials.
Oberste and WEAV3D are relatively new to working with NFCs. Originally, WEAV3D developed an automated weaving system that manufactures tunable thermoplastic composite lattices that can be used to reinforce a variety of materials, from concrete to automotive panels. The company began with carbon and glass fiber lattices, and has in recent years expanded its R&D work to include natural fiber lattices, which are used to reinforce NFC panels for the automotive market.
If you were starting a new facility, it would be unlikely you'd pay this list price for any of this equipment. If you are molding a highly sophisticated product mix, these prices might be low. They also don't represent the prices of the most basic imported molding machine, either. But these prices at least offer a glimpse at what a good starting point might be.
“Our materials replace and augment commonly used plastic additives like fiberglass, talc and calcium carbonate. Our LCA [lifecycle assessment] gives brands and suppliers a predictable path to reduce the carbon footprint of the plastic they use everyday just by changing the additive and reducing the amount of plastic required to create the same product,” Henry says.
Beyond high-performance marine and sports, the appealing sustainability aesthetic of natural fibers lends these materials to decorative interior items and furniture, as Lingrove and Culture iN have discovered with their product lines.
An overview of ASTM Standard Guide D8509, and its coupon-level mechanical testing of design properties for analyzing composite bolted joints.
If you require some level of cleanroom molding—often required by medical and electronics parts—then you must decide how you will achieve it. The various types of cleanrooms include Class 100, Class 1000, Class 10,000 and Class 100,000. Each level has its own criteria and must meet certain requirements as established by FDA guidelines. Class 100 is the most stringent and Class 100,000 is simply a "clean environment," and therefore the easiest to achieve.
What about an NFC part’s EOL? In general, several recycling options for composites exist, at various levels of commercialization. For example: Mechanical recycling, involving the shredding of entire parts into small pieces that can be reused for injection molding or another purpose; pyrolysis or thermolysis, where heat is introduced to a part until the resin is burned off, leaving a reusable fiber behind; or solvolysis, which uses some type of chemical process to separate a resin from its original fibers.
As with most any major capital purchase, the price you pay for a particular unit depends on a lot of variables. In injection molding the variables are too numerous to list here, but generally, whatever you buy will vary by application. Much depends on what kind of material you'll mold, how much you'll use, and how large the parts are. But let's say, just for grins, that you do want to start up your own molding shop, based on the list above. And let's say you make some broad generalizations about how material will be handled, how much material you'll use, how long your cycles will be, and other considerations. About how much would the primary equipment cost for such a startup facility?
Oberste sees the prototyping work WEAV3D has done with lattice-reinforced NFC panels as the first step toward use of WEAV3D’s lattices for automotive applications. “The OEMs [we’ve worked with] are interested in the idea of whether [this technology] could strengthen the natural fiber panels to the point where other types of reinforcements in the assembly could be eliminated as well as the ribbing, such as brackets or stiffening plates, and therefore reducing weight and part count in the overall assembly.”
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
Some molders prefer lower-volume parts molded for high-dollar products, which tend to offer better profit margins. For example, the box that houses the instrumentation monitoring an IV drip must meet tough cosmetic standards, and it's only produced in quantities of 100,000 a year. Others prefer to mold component parts such as gears that remain out of sight, which means that although fit and function still are critical, cosmetic requirements are less stringent.
Recoat temperature, part orientation and bead geometry are some key design variables to consider for a successful and reliable large-format additive manufacturing (LFAM) process.
One is that natural fibers absorb resin differently than other fiber types — “like sponges,” as Juillard describes. For this reason, he says a manufacturing process such as compression molding, RTM or other vacuum-assisted process that introduces pressure during consolidation is needed for optimum results. He adds, “If you try to do wet layup with no pressure, you won’t be able to control the resin-to-fiber ratio [with NFCs].”
One of the latest, most ambitious exterior construction applications to date was announced in November 2022 by the University of Maine Advanced Structures and Composites Center (UMaine ASCC, Orono, Maine, U.S.), which fabricated a 600-square-foot, 3D-printed prototype house made entirely from bio-based resins reinforced with a locally sourced, wood-based fiber. Called BioHome3D, the prototype was developed with funding from the U.S. Department of Energy (DOE) and in partnership with Oak Ridge National Laboratory (ORNL, Knoxville, Tenn., U.S.)
CompositesWorld's Carbon Fiber conference offers you cutting-edge information and access to industry experts in streamlining manufacturing costs, market outlooks and forecasting, and more. You will make invaluable contacts as you meet and network with the industry's most innovative and influential leaders at Carbon Fiber. __PRESENT
Base Materials introduces a high-performance, toughened epoxy tooling board designed for thermoforming and vacuum forming processes, direct-to-part applications and more.
Generally, space for secondary operations is designed in one of two ways—either as a separate area or room designated for such activities, or beside the press. The choice depends on the types of secondary operations to be performed and the space available. Some molders prefer to do secondary operations alongside the press after each cycle in order to minimize handling and maximize operator time. This can also increase efficiency in that parts don't have to be boxed, moved, unpacked for the secondary operation, and then repacked. Less handling is also easier on the parts and results in lower scrap rates—another important consideration. This requires that all operations be considered together and set up in cells, usually dedicated to a single product or assembly, sometimes with multiple parts.
Several factors must be considered to determine the return on investment (ROI) for a press. One of the biggest factors driving machinery investment is the amount of energy used. Estimates put energy costs at about 5 to 7 percent of a molder's total operating budget. Considering the amount of energy a typical 15-press plant can consume, energy has become an enormous cost issue. A-c variable-speed pumps and motors offered on most newer equipment, and as a retrofit for older equipment, can save energy by using it only when called upon during the machine's cycle.
Validation of 80-100% tensile strength and comparability to injection molding via Voxelfill extrusion process was achieved through plastic and fiber-filled test series.
Analyzing structural resonance of the aircraft under various loads becomes a critical step in obtaining flight certification.
“Automotive is picking up, as the release date of large-scale serial production cars is getting close — these are projects that we have worked on together with OEMs for several years and that are now finally about to hit the consumer market,” Bcomp’s Carlson says.
CW Tech Days are virtual events dedicated to the topics impacting the composites industry today. Access past event recordings and register for upcoming Tech Days.
As an employer, you will also quickly discover what many molders know already: In 2001, finding and keeping reliable production employees is very difficult. The competitive job market is a significant challenge for many molders. One way to combat this problem is to rely more on robotics and automation to perform the tasks that might otherwise be done manually. Robots can be used to pull parts from the mold, remove sprues, and do some assembly work. Most robot systems mount on top of the press and by themselves may not affect plant layout. But you may elect to use conveyors or other parts handling equipment press-side in conjunction with robots. Make sure to allow enough space to accommodate such equipment.
According to WEAV3D’s Oberste, more sustainable, renewable and/or recyclable materials within automotive designs is no longer a niche idea, and companies are willing to pay a bit more to be able to claim a certain percentage of natural fiber or other sustainable materials within a vehicle. “There are several different approaches the industry is taking to ‘sustainable’ content — natural fibers is one option within that,” he says.
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Natural fibers, new markets. In recent years, the landscape for natural fiber materials — materials, processes and end markets — has expanded beyond niche applications and R&D labs into increasingly larger-scale commercial projects. A few examples pictured include Formula 1 and other motorsports applications (top left image), skis and other sporting goods (top right), furniture and other interior applications (bottom left) and automotive interiors (bottom right). Photo Credit, left clockwise: Super Formula, via Bcomp Ltd.; ZAG Skis / Juan Cruz, via Bcomp Ltd.; Autonational; Lingrove
Warehousing: A Hidden Requirement You will need space for storage of molds not in use, bags and gaylords of material, the finished-goods inventory customers most likely will request be held, and other equipment. Typically, molders use an average of 10 percent of their total floor space for warehousing. This will vary depending on the size of your molded parts, how many different materials must be kept on hand, and the size of the molds to be stored.
After several years of research, today the company’s core product is called Varian, a patented “composite thread” that weaves together flax fibers and plant-based PLA resin; it’s available in prepreg sheets or rolls. Made from materials sourced locally within France, Varian is customizable with choices of weave, finish and colors.
Adding strength and stiffness. WEAV3D’s lattices are shown to increase flexural strength and stiffness of an NFC panel. In the graph above, an unreinforced NFC panel (NFPP) gains stiffness and strength properties with the addition of different layers and material mixes of lattices (SSG is single-sided glass fiber lattice, SSC1 is a single-sided glass/carbon fiber lattice, DS1C is a double-sided mixed carbon/glass lattice with one carbon tape layer in each mix, DS2C is a double-sided mixed carbon/glass lattice with two carbon layers in each mix). Ultimately, lattice reinforcement increases performance to match a panel made from 50% long glass fiber reinforced polypropylene (50% LCF PP). Photo Credit: WEAV3D Inc.
Stephen Heinz, vice president of R&I for Syensqo delivered an inspirational keynote at SAMPE 2024, highlighting the significant role of composite materials in emerging technologies and encouraging broader collaboration within the manufacturing community.
As CW reported in 2016, early commercial adopters of NFCs included ski and snowboard manufacturers adopting Bcomp flax fiber/epoxy materials, taking advantage of the lighter weight of flax fiber compared to fiberglass and the high vibration damping for a smoother ride. Today, Carlson reports that Bcomp still has a large share of business in sporting goods as well as motorsports applications. One recent example that CW reported on is an award-winning motorbike brake disc cover made in part with Bcomp’s flax fiber/epoxy.
Hannah Mason reports on sustainability in manufacturing across Gardner Business Media brands. She is also a Technical Editor reporting about composites manufacturing for CompositesWorld, a topic she has covered since 2018. She earned a Masters of Arts in professional writing from the University of Cincinnati and a B.A. in writing from West Liberty University.
Quality Issues—What They're All About Finally, consider how your new plant will develop and assess product quality. During the past decade, quality issues as a part of good business operations have become a top concern for custom and captive molders. The OEM-custom molder relationship has always been one of interdependence, but until recently, custom molders had free rein when it came to matters of production.
Another factor to consider when investing in a molding press is the type of mold(s) it will be running. Will they be large, multicavity, hot runner molds that require larger-tonnage equipment, or single-cavity, conventional molds that require smaller-tonnage machines? Controls and the speed of system response must be also considered. Do you need a press that provides versatility, or are you investing in a press that will just run one job continuously?
Continuous fiber-reinforced thermoplastic composite targets full circularity in aircraft interior applications, with FST, impact resistance and toughness features.
This includes the company’s NAFILean products, a hemp fiber-based, injection-moldable material first launched in 2011 for components like instrument panels. The company also offers natural fiber-reinforced polypropylene (NFPP) products that can be compression molded and combined with other materials like recycled carbon fiber. New product lines and serial applications for NAFILean and NFPP are reported to be underway.
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
Thermoplastics for Large Structures, experts explored the materials and processing technologies that are enabling the transition to large-part manufacturing.
Six U.S. companies have proven their recycling technologies for composites and rare earth elements, and will be supported for relevant scale demonstration and validation.
Reinforcing NFCs with lattices. WEAV3D Inc. produces carbon, fiberglass or natural fiber lattice reinforcements for a variety of materials. The company has recently entered the NFC space with its hemp and jute-reinforced NFC panels for automotive trunks and other interior applications. Photo Credit: WEAV3D Inc.
Low-melt polyaryletherketone (LMPAEK) unidirectional tapes provide outstanding thermal and fire protection, demonstrating their effectiveness through rigorous testing. These tapes are fire, smoke and toxicity compliant with FAR25.853 and meet OSU Heat Release Rate standards. The tapes were tested under ISO 2685/AC 20-135 Change 1, meeting the fireproof criteria. Additionally, they met UL 2596 requirements for battery thermal runaway tests. These tapes are crucial for high-temperature applications showcasing their resilience and safety in both aerospace and automotive applications. Part of a broader range that includes films and compounds, Victrex LMPAEK materials are valued for their excellent processability and weldability. They offer versatile solutions for complex needs beyond traditional structural parts, such as: thermal runaway and lightning strike protection, heat sinking, and intricate bracketry. Victrex LMPAEK materials facilitate automation and high-rate production while addressing performance and sustainability challenges. With reduced environmental impact, lower weight and cost-efficiency, they meet the evolving demands of the transportation industry and support innovative design solutions. Agenda: Introduction to LMPAEK ecosystem, highlighting unidirectional tapes Thermal and fire protection performance: applications and benefits Material forms and processability Sustainability and efficiency Conclusion and future innovations
Natural fibers — derived from plant-based sources such as flax, hemp, jute or bamboo — have been used for thousands of years, but adoption of natural fiber-reinforced composites (NFC) as we currently define them has been much more recent, with commercial applications slowly emerging over the past decade.
A combination of Airtech’s 3D printing materials and Ascent’s production capabilities aim to support increased use of composite additive tooling in spaces like defense and aerospace.
In these sessions, experts will discuss the emerging hydrogen economy and the opportunities for composites in this lucrative space.
Bcomp’s Carlson says, “For suppliers of natural fiber reinforcements, the market is relatively immature and developing as we speak. There are so many factors that must come together: Combining expertise in natural fibers with the industrial knowledge to scale, the technical knowledge to develop a high-performance product and the commercial capacity to take it to the market, and convincing markets with high inertia to change and high entry barriers to try something new.”
For example, longtime reinforcements and resins supplier Hexcel (Stamford, Conn., U.S.) launched an NFC-specific, HexPly Nature Range in 2022, which includes woven and stitched flax fiber reinforcements with HexPly M49, M79-LT and M79.1-LT epoxy resins containing partially bio-derived content. The partially bio-based resins can also be used with traditional fiberglass or carbon fiber reinforcements, as well, notes Achim Fischereder, industrial marketing director at Hexcel.
Closed mold processes have many advantages over open molding. In this knowledge center, learn the basics and vital tools needed to produce parts accurately.
Renewable fibers. The sustainability appeal of natural fiber composites from plant-based sources (like flax, pictured) is to replace synthetic materials like carbon or fiberglass with natural, renewable alternatives. Companies continue to make NFCs more sustainable still by localizing supply chains, reducing carbon footprint for manufacture and using bio-based resins in addition to natural fibers. Photo Credit: Bcomp Ltd.
Companies are also using NFCs in exterior applications in construction and infrastructure. The multinational design, engineering and architecture firm Arup (London, U.K.) won a JEC award in 2015 as part of the EU-funded BioBuild project, demonstrating a self-supporting facade system comprising 4 × 2.3-meter flax fabric/bio-resin panels. The NFC panels reportedly reduce the embodied energy in façade systems by up to 50% compared to conventional construction materials with no increase in cost. More recently, Exel Composites (Vantaa, Finland) produced 6 kilometers of flax/bioresin profiles for a “fauna passage” viaduct in the Netherlands and three flax fiber/bio-resin bridges will be completed by 2023 as part of the “Smart Circular Bridge” project. Luttwak notes these exterior architecture applications are an end goal of Lingrove’s. Autonational, too, has begun working on filament-wound NFC prototypes for outdoor structures like poles for road signs, with additional applications to come.
From furniture to floors. Interior commercial applications of NFCs range from tables (top) and chairs (bottom) to ceiling and floor panels. Photo Credit: Autonational (top) and Lingrove (bottom)
What does today’s NFC market look like? The Alliance for European Flax-Linen & Hemp (Paris, France) tracks data on flax and hemp supply, demand and applications from its member suppliers across Europe. Chantal Malingrey, director of marketing and communication, says that flax fibers are the most used natural fibers in composites today, though composites are still the smallest end market for these fibers overall, compared to the much more established fashion and textile industries. “In broad terms, we typically say the breakdown is 60% for fashion textiles, 30% for furniture textiles and 10% for technical applications, which includes composites.”
In recent years central material handling systems have grown in popularity. Such systems locate resin, dryers, hoppers, and blenders in one place, often in a basement below the presses, or on a mezzanine above the presses. Vacuum pumps and small pneumatic loaders at each machine move resin from the centrally located hoppers to the press via a network of tubing. Such a setup keeps bulky gaylords and dryers out of the way, allows machines to be spaced closer together on the floor, and makes material handling simpler as all resin can be managed from one location. A central system is more expensive to buy and install, but is usually more efficient in the long run.
Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.
Over the past two or three years, sustainability has become increasingly important. Once a niche interest, sustainability focused on emissions reduction is now being driven by standards. Governments, regulatory organizations, OEMs and consumers are demanding materials and process solutions that favor decarbonization.
The JEC Forum DACH is a business meetings event organised by JEC The JEC Forum DACH is organised on October 22 and 23, 2024 by JEC, in partnership with the AVK, gathering the composite materials community from the DACH Region (Germany, Austria and Switzerland).
Furthermore, beyond natural fiber fabrics and tapes, short natural fibers are being developed as additives for use in plastic parts. For example, in 2022, Heartland (Detroit, Mich., U.S.) launched Imperium, its first hemp fiber additive product line. According to Jesse Henry, CEO and founder, the company began as a bio-based plastics company, but pivoted to hemp fiber additives in 2020, aiming to support customers with cost-effective, carbon-negative additives for use in thermoplastics. Heartland sells Imperium in powder and masterbatch format for use in injection molding, compression molding, extrusion, thermoforming, and other types of plastic and rubber manufacturing.
Notably, in 2022 BMW Group’s investment arm iVentures acquired a stake in Bcomp, signaling a commitment to commercial uses of sustainable materials. In June 2022, BMW unveiled a new M4 GT4 racecar sporting Bcomp’s flax fiber materials in several body components. The company announced at the time that the switch to NFCs reduced greenhouse gas emissions for the vehicle production by up to 85% for those components, while improving vibration damping performance.
In addition, entering custom injection molding with two or three presses and minimal capabilities means entering a highly competitive market already crowded at the low end with several thousand molders. Because many of these molders, with sales less than $1 million annually, offer little in the way of secondary services, they compete on the basis of price. This results in thin margins and a low survival rate.
Jetcam’s latest white paper explores the critical aspects of nesting in composites manufacturing, and strategies to balance material efficiency and kitting speed.
The Marservis PROeco is a mass transportation marine vessel using Bcomp natural fiber for interior parts in place of standard materials.
Ultimately, there is still much opportunity for growth in both technology and adoption of NFCs, but the past few years have solidified these as an option for sustainable manufacturing across a variety of end markets.
New aircraft is expected to deliver wind turbine blades from 105 meters up to expand the reach of wind energy and achieve global climate goals.
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
Also making recent headlines is Lingrove’s ekoa product, enabling the color-changing, interactive doorspear component inside Hyundai’s Palisade concept vehicle. Similarly, in 2022, Cobra Advanced Composites (CAC, Chonburi, Thailand) launched a line of exterior and interior finish components made from flax fiber prepregs.
Selecting the Best Equipment Presses with up to 100 tons of clamping force, which mold small parts, constitute the second largest group of presses used by molders in the United States. The majority of molders operate with presses in the 100-ton to 350-ton range. Presses in the 350-ton to 750-ton range represent the third largest group. Most injection molders enter the business with small to midsized molding presses.
Whether you’re exploring new applications or seeking to gain a foothold in emerging markets, Carbon Fiber 2024 is where you’ll discover the insights and connections needed to shape your business strategy. Register now.
Cevotec, a tank manufacturer, Roth Composite Machinery and Cikoni, have undertaken a comprehensive project to explore and demonstrate the impact of dome reinforcements using FPP technology for composite tanks.
Additionally, stitch-bonded non-crimp fabrics (NCFs) provide manufacturers and asset owners even more ways to gain a competitive advantage with products built specifically for the environments and loading conditions in which they will be utilized. Join Vectorply Corporation and Creative Composites Group (CCG) for this in-depth webinar detailing the process of engineering NCFs to build composite parts that will stand the test of time. Unlike steel, concrete and wood, composite NCFs can be optimized utilizing various fiber types, architectures and substrates to achieve the specific goals of their application efficiently. High corrosion resistance, strength and stiffness, and longevity can all be accomplished with custom-designed laminates for these heavily abused applications. Vectorply Vice President of Engineering Trevor Gundberg and Creative Composites Group Chief Sales Officer Dustin Troutman will share their industry-leading expertise on the process of laminate design and part production. Attendees can expect to learn when to use composite NCFs in their production process and the wide range of fiber-reinforced plastic (FRP) composites that Creative Composites Group produces for the industrial and infrastructure markets. Whether you want to learn more about utilizing NCFs in your production process or why CCG’s extensive product line may be the choice for your project, this webinar is the place learn the process and how to take the next steps. Agenda: Distinct advantages of non-crimp fabrics versus alternative materials How to design laminates for specific processes such as pultrusion and infusion Real-world success spotlights of NCFs in industrial applications
Explore the technologies, materials and strategies used by composites manufacturers working in the evolving space market.
Also in the interiors space, Culture iN (Montaigu-Vendee, France) was founded in 2014 with the goal of producing sustainably sourced and processed textiles for furniture and luggage applications. Company founder David Ambs “wanted to change our living spaces” to be more focused on “sensorial appeal [and] respect for health and the environment,” explains Ronan Legrand, commercial director.
Porcher Industries (Eclose-Badinières, France) and Saertex (Saerbeck, Germany) have also announced NFC offerings, with flax fiber/thermoplastic automotive-grade materials (Porcher) and flax fiber noncrimp fabrics (NCF) for marine and leisure applications (Saertex), each in partnership with flax supplier Terre de Lin. Terre de Lin, which claims to produce about 15% of the world’s flax supply, manages all stages of flax production for its 700-member farms, from seeds, to processing of the harvested flax, to manufacture of fibers specific for composites and other markets. Over the past decade, recognizing the value for its flax fibers within the composites industry, Terre de Lin has worked to offer flax fibers “adapted to the composites market,” Cazenave says, including controlled quality and development of a versatile range of rovings compatible with composites processes.
Stemming from years of university and industry research, the first major use cases were sustainability-minded sporting goods manufacturers of products like tennis rackets and skis. Over time, various “players, projects and industrial successes have gradually given [NFCs] visibility and credibility,” Cazenave says.
One of Bcomp’s goals is to qualify its flax fiber materials for use in rail and interior aircraft applications, which means developing higher-performance products that can pass stringent fire tests. “Our goal is to help decarbonize mobility; our impact increases as we reach into even larger markets,” Carlson says.
Lingrove has worked to develop ekoa for automotive interiors for years, and is now targeting structural applications in the construction industry.
To this end, Malingrey says the Alliance has released an open-source, downloadable LCA for studying the environmental impact of flax fibers grown and scutched in western Europe. All fiber suppliers in the study were part of the Alliance’s European Flax certification and use the European Commission’s Product Environmental Footprint (PEF) approach. Malingrey notes that additional mapping and data collection projects are in progress.
Backed by government funding, Autonational’s R&D team began working with the university team and the resulting spin-off company Plantics (Arnhem, Netherlands), which now sells its resins commercially. Adapting its filament winding machinery for natural fibers and bio-based resins required about a year and a half of trial and error, Fietje says, requiring many adjustments to the temperature and processing conditions.
Reliable news and information on where and how fiber-reinforced composites are being applied — that’s just the start of what you get from our team here at CompositesWorld.
Advanced Engineering is the UK’s largest annual gathering of engineering and manufacturing professionals. The event will help you to source new suppliers, network, build connections and learn about the latest industry developments all in one place. Get involved and exhibit alongside 400+ exhibitors offering solutions and products across all industries and sectors to help improve your productivity and inspire creativity. With over 9,000+ of your peers due to attend and ready to network with and inspire you, this is the event you can’t afford to miss!
Starting with sporting goods. The vibration-damping properties of NFCs, plus their aesthetic appeal, contributed to the materials’ appearance early on in the market, particularly in sporting goods like skis. Photo Credit: ZAG Skis / Quentin Iglesis, via Bcomp Ltd.
Led by global and industry-wide sustainability goals, commercial interest in flax and hemp fiber-reinforced composites grows into higher-performance, higher-volume applications.
Additional efforts are ongoing at the R&D level. For example, Fietje reports that Autonational and its partner Plantics are working on a pilot recycling system using steam to separate fibers and resins — specifically with the mechanical requirements of NFCs and bio-based resins in mind.
Multiple suppliers are working on bio-based resins for use with natural fibers, including Hexcel. Fischereder says, “In the future, we believe that bio-derived epoxy content, in addition to equivalent mechanical performance, will not just be offered as an option. It will start to become the baseline and a must-have to proceed with material qualification.” For Hexcel, this means working on new, bio-derived versions of HexPly resin systems, which are currently undergoing certification by testing and certification services company TÜV (Cologne, Germany).
Herone, Spiral RTC, Teijin Carbon Europe and Collins Aerospace Almere recycle A350 thermoplastic composite clips/cleats waste into rods for the all-thermoplastic composite Multifunctional Fuselage Demonstrator’s crown.
Finally, it's usually not enough to just mold parts anymore, package them in a box, and send them to the customer, traditionally called "shoot and ship." Many manufacturers go to molders now looking for design and engineering services, tooling assistance, and postmold decoration and assembly expertise. Captive molders, as well, are more likely to have several secondary functions integrated with the molding of the basic parts.
Two decades ago, a $30 million custom molding company was considered a top business. Today, as a result of mergers, acquisitions, and growth that has outpaced the national average, a company that size is considered small. So although an individual can set up a small injection molding operation for less than $1 million, unless the company has a special capability to offer or establishes a sound financial relationship with one or two customers, chances for success are slight.
Arris presents mechanical testing results of an Arris-designed natural fiber thermoplastic composite in comparison to similarly produced glass and carbon fiber-based materials.
The ITHEC 2024 will take place from the 9 to 10 October 2024 in Bremen, Germany. At the 7th International Conference, more than 300 participants from around the world will be presenting and discussing newest scientific results, meet leading international specialists, share their expertise and start business co-operations in the field of thermoplastic composite technologies. The international exhibition will feature 40+ exhibitors showcasing all steps of the supply-chain. Be it materials, machines, testing, processes, or solutions. By combining the exhibition and the conference ITHEC is further fostering the inter-connectivity between science and industry.
Lingrove’s Luttwak adds that localizing the supply chain is of vital importance, particularly for materials suppliers that currently reside in areas where flax and hemp are not grown.
The automotive interiors industry already mass-produces compression-molded NFC panels for use in trunk floors and sidewalls, made primarily from hemp or jute in the form of nonwoven mats or long fibers. Typically, Oberste says, these panels are reinforced with injection overmolded glass fiber-reinforced ribs to add strength and stiffness where needed, but these ribs add unwanted weight and geometry to the panels. With an OEM partner, WEAV3D began an effort to replace these ribs with layers of carbon, glass or natural fiber thermoplastic composite lattices produced via WEAV3D’s automated system.
Next step: NFCs in aircraft? Several companies and R&D products are working toward use of natural fibers with aerospace-grade resins for qualification in aircraft interiors. This concept image uses Culture iN’s Varian flax fiber-based composite material. Photo Credit: Culture iN
“In the same way that other high-end industries use quality standards, the Alliance engages the flax and linen sector in the application of traceability and transparency procedures. This is one of the key strategic commitments to the composites sector,” she says.
The composite tubes white paper explores some of the considerations for specifying composite tubes, such as mechanical properties, maintenance requirements and more.
During this CW Tech Days event, sponsored by Composites One, experts will offer presentations to review and evaluate the composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.
For example, Autonational’s first commercial filament winding line specifically for NFCs was developed for furniture manufacturer Vepa (Hoogeveen, Netherlands). The winder was first used to build prototypes of filament-wound table legs and chairs from flax fiber and bio-based epoxy, with the first commercial line delivered at the end of 2022.
Still, Malingrey says that demand for natural fibers has been “increasing strongly since 2020. Whereas a few years ago, natural fibers were more of an R&D exercise, now we see fully developed products entering the market.”
While many molding companies have rushed to implement the latest and greatest with regard to quality standards, others balk at the idea of so much money spent without the assurance that a particular level of quality is actually needed. In some ways, too, these so-called levels have made the playing field more uneven and are knocking smaller molding shops out of competition.
The supply chain for flax and hemp themselves also continues to grow, but as with any agricultural product, it can be somewhat volatile. And though materials suppliers agree that the quality of the product has come a long way in recent years, measurement of that quality and standardization are still ongoing endeavors.
The product was also developed to help solve compatibility challenges for compounders. Typically, “Natural fibers don’t mix well with petroleum-based plastics,” Henry explains, but, “Imperium focuses on solving the bonding, dust, flammability, moisture and bulk density problems that plastic compounders face when working with natural fibers.” Over the next two years, the company plans to scale up its current production to meet growing demand.
Still, progress is being made and the landscape has changed much over the past decade, especially in the area of flax fiber composites. According to Laurent Cazenave, communications officer at flax farming cooperative Terre de Lin (Saint-Pierre-le-Viger, France), “Ten years ago, flax was not widely used in industrial applications, [though] university studies highlighted the advantages of flax fiber, notably low density contributing to lightweight composite parts.”
EU project will develop bio-based, repairable and recyclable vitrimer composites and advanced sensors for highly reliable, sustainable wind blades.
In automotive interiors, a variety of companies are beginning to get involved — and some have been in the space for many years. For example, global automotive supplier Faurecia (Nanterre, France), part of the Forvia Group, has been working on automotive interiors for decades and announced a number of new technologies in 2022. The company aims to reduce the carbon footprint of its materials by 87% by 2030 across several of its divisions, with a focus on sustainable materials.
After several initial prototypes of table legs and chairs done at Autonational’s R&D center, the commercial filament winding line was delivered to Vepa at the end of 2022.
So far, despite these challenges, WEAV3D has seen positive results, showing that even a single, 0.3- to 0.5-millimeter lattice layer adds enough bending stiffness that the OEM could not only eliminate the ribbing but also make the overall panel thinner. WEAV3D demonstrated that it could produce a lattice-reinforced composite panel with the same mechanical properties as the original rib-reinforced panel, at about a 25% reduction in part mass. For added stiffness, additional layers can be added, and the tapes can be made from carbon, glass or natural fiber tapes as needed. WEAV3D continues to work with Tier 1 suppliers and OEMs on prototype panels and tests, aiming toward serial production.
Over the past few years, a lot of attention has been paid to the emergence of NFCs in automotive components. This has included body panels and hoods for a variety of supercars and race cars, as well as interior applications for commercial vehicles.
Injection molding auxiliary equipmentThe central material drying/handling system, including five insulated drying hoppers, dehumidifying dryer, pumps, filters, and conveying system would cost about $115,000. Beyond that, at right are typical prices for other auxiliary equipment.
Even further, NFCs in the mobility space may some day soon take to the skies, transitioning into aircraft interiors applications. Aeroflax, an aerospace-grade flax fiber/bio-based resin product developed by Lufthansa Technik (Hamburg, Germany) with Bcomp’s ampliTex and powerRibs flax fiber reinforcements, is said to be at technology readiness level (TRL) 5 or 6, with the potential to increase sustainability and reduce weight in aircraft ceiling panels, door frame linings and more.
Oberste notes that use of natural fiber tapes over the past year has been new for WEAV3D, involving a back-and-forth process with the tape supplier to optimize the materials and the processing. “The behavior of the tape is different, and it handles differently,” he explains. For example, natural fiber tapes are more prone to curling or twisting, but must consistently lie flat to go through the WEAV3D machine or other processes.
Flax and hemp. A variety of plant-based fibers exist today, with the top two in the composites space being hemp and flax (pictured). The formats and processing capabilities of these materials continue to expand as more companies enter the arena of supplying NFC materials. Photo Credit: Bcomp Ltd.
In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.
Filament winding with NFCs. Companies continue to expand the processing capabilities of NFCs from prepregs and infusion, such as Autonational's R&D work on filament winding with flax fiber/bio-based resin. Photo Credit: Autonational
Whether you’re exploring new applications or seeking to gain a foothold in emerging markets, Carbon Fiber 2024 is where you’ll discover the insights and connections needed to shape your business strategy. Register now.
Today it's increasingly apparent that if you're starting a plant or a business, you are either given or must find a niche—a specific market or product line—and focus on molding for that market or customer. Will you mold large parts? Small parts? Do you want to be a molder of low-volume, high-dollar parts? Or high-volume, low-dollar parts? Most people would answer that they want to be a molder of high-volume, high-dollar parts. If only it worked that way.
Carlson explains that for Bcomp’s flax fiber/epoxy parts, thermal energy recovery is currently the best option available. This involves incinerating the part at its EOL in a process that recovers and uses the heat from the incineration for another purpose, such as generating electricity or capturing the heat for use in houses.
Malingrey of the Alliance for European Flax-Linen & Hemp agrees, noting that scientifically driven datasets on both the environmental and technical advantages of flax and hemp fiber composites are needed to truly prove out their value in the market and allow for established guidelines on their use.
Wood-fiber composite, 3D printed house. This R&D prototype, announced in fall 2022, experiments with locally sourced wood fiber as a reinforcing material for a 3D-printed house structure to solve housing shortage issues. Photo Credit: UMaine ASCC
As far as molders and quality are concerned, size doesn't necessarily mean that a company is better. A large company or plant can be run poorly and have low productivity with below-average profits or ROI. A small plant can be well run and have high productivity and good profits. It's generally known, however, that all molders, whether they have $100 million or $1 million in production or sales, fight the same battles—only the scale is different. The bigger the company, the bigger the problems.
When the demand for world-class molding facilities is added to state-of-the-art manufacturing capabilities, the bar for entry into the custom injection molding business rises considerably. Instead of being able to enter the molding business on a shoestring, as many did 30 years ago, a large financial investment is now required. This generally requires the cooperation of a bank, an equipment leasing or lending institution, and financial backing from private investors to pull together the funds needed to succeed. Likewise, the barriers to entry for a captive operation to provide a good return on investment are high. It's not enough to buy molding machines and auxiliaries and leave them in place without improvements for the long haul. Captive operations also must not only make an initial investment, but also be prepared to stay technologically attuned.
During this webinar, the audience will be introduced to a variety of fiber composite technologies — as well as the machines and equipment — from short fibers to continuous fibers, from thermoset to thermoplastic, as well as the according process technology, including a special focus on long-fiber injection (LFI) and structural composite spray (SCS). Focus markets include automotive, aviation and AAM, transportation, and construction. This webinar will provide a detailed overview of according application examples. Agenda: Long fiber injection (LFI) Structural composite spray (SCS) Resin transfer molding (RTM), wet compression molding, etc. Pultrusion FiberForm
If material handling will be done manually, that is, by using forklifts to convey gaylords, or 1000-lb containers of resin, to presses, then adequate space must be allowed to accommodate the forklifts. If pneumatic conveying systems are to be used, then you might consider an enclosed material-storage aisle between the rows of presses, which keeps bags and gaylords of material out of sight yet handy to the presses.
IMM made some big assumptions and got ballpark figures from a few manufacturers who were willing to share their cost data. The tables below list some basic prices for injection molding machines and auxiliary equipment. For the purposes of this list, we assumed this 15-press facility would orient the machines in two side-by-side rows on 15-ft centers. We also decided that material handling would be central, designed to accommodate five different resins, each used in equal amounts, each with an average drying time of 3 hours. Hypothetical average cycle time would be 60 seconds at maximum shot capacity for all machines, which would consume 562 lb/hr of resin. Material would be pulled from gaylords, dried centrally, and delivered to each machine via machine-mounted vacuum receivers.
MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.
Today, numerous suppliers have natural fiber materials marketed for composites use. Bcomp Ltd. (Fribourg, Switzerland) launched its first two products in 2012. The company’s powerRibs reinforcement grids and ampliTex dry fabrics and prepregs come in a range of compatibility options, including thermoplastics or thermoset resins, and processes including resin transfer molding (RTM), vacuum infusion, autoclave cure or compression molding.
Knowing the fundamentals for reading drawings — including master ply tables, ply definition diagrams and more — lays a foundation for proper composite design evaluation.
The market for NFCs has come a long way in the past 10 years, but efforts continue to ready the natural fiber supply chain, materials and processes for more widespread adoption by manufacturers.
Automotive interiors. From trunk panels to visual interior components like those pictured, the vibration damping properties of NFCs serve automotive interiors well while meeting automotive OEM goals for increased use of sustainable materials. The bottom image shows Lingrove’s ekoa materials in use on a color-changing visual doorspear on the Hyundai Palisade concept vehicle. Photo Credit: Lingrove
The number of NFC materials available has grown in recent years, but Texonic’s Juillard notes that one hurdle of NFC development continues to be limitations in processing compared to traditional fiber materials. Although natural fiber materials can be manufactured via a variety of processes, with common methods being prepreg layup/autoclave cure, compression molding and RTM, unique challenges remain.
The Molding Machine: Cost Justification More than just a purchase, an injection molding machine is an investment. As with any investment, you want to know what your return will be. What value will the machine contribute to your overall operation? Where will your break-even point be? Will the machine pay for itself in a year? Two years?
A number of other companies have also entered this space, with the goal of making their specific end markets more sustainable. Lingrove (San Francisco, Calif., U.S.) launched its flax fiber and plant-based resin composite material, called ekoa, to replace wood in ukuleles and guitars in 2013, followed by sporting goods in 2014. It then worked to commercialize and industrialize ekoa for automotive interiors and the furnishings/interiors market.
The first project is underway to recover carbon fiber used in an A330-200 aircraft, which will then be regenerated for other end uses by HRC.
Marine expansion. Some of the largest NFC parts manufactured to date have been for recreational and racing marine vessels, including infused decks and hulls. Hybrid fiberglass/natural fiber is also being used. Photo Credit: Baltic Yachts, via Bcomp Ltd.
Large OEMs—specifically, the automotive and computer industries—adopted the philosophy of manufacturing with quality as they began seeking greater market share for their products. They recognized, however, that the quality of their products could be no better than the quality of the products' component parts. For this reason, much of the responsibility for improving quality has been laid directly at the feet of custom injection molders who supply the vast number of components.
After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
Over the last 8 months, Archer Aviation has completed a total of 402 test flights with its composites-intensive aircraft, adding to key milestones.
Fischereder adds, “Increased sustainability and enhanced health and safety are both areas where our input raw materials can have a major impact. As the bio-derived chemical raw materials industry has continued to develop, Hexcel has moved to partially replace petrochemical-based epoxy content with bio-derived alternatives. A key target for us was to make sure that the excellent resin characteristics remain unchanged in the new Nature Range products, maintaining high mechanical performance and consistent processing properties while giving customers a more sustainable material option.”
Despite the sustainability appeal of a plant-based, renewable alternative to carbon or glass fiber, commercial adoption of natural fibers in composites has been relatively slow, due to industry challenges such as limited supply, variable fiber quality, limited mechanical performance in finished parts, differences in manufacturability and, depending on the material, higher material costs compared to fiberglass.
In 2013, CW reported that biocomposites — both natural fibers and bio-based resins — were beginning to reach a level of commercialization and competitiveness with more traditional synthetic fiber products. At the time, cellulose fiber, which is processed from plant-derived pulp into uniform fibers, appeared to be the top contender in the natural fibers space. By CW’s 2016 feature on the same topic, improvements in performance and increased processing options had enabled flax fiber to rise as the natural fiber of choice for sporting goods applications and some automotive parts, with research in bamboo fibers showing promise.
You must also determine what services you will offer, and what equipment will be needed to supply such capabilities. For example, even if you decide not to have a moldmaking facility in-house, you will need a certain amount of equipment for mold maintenance and repair. Will you do any type of secondary operations? If so, what type of equipment will that require? See the box above for a list of equipment in a 15-machine shop. Equipment costs are shown below.
One example related to materials is the EU’s 2022 European Green Deal which proposed several strategies that mandate EU-manufactured products ranging from construction materials to textiles be made from sustainable, recyclable or recycled materials.
Within the recreational market, NFCs have also found a home on recreational and racing boats and yachts, starting with a number of prototypes. As one example, the CrossCall racing yacht, which won the Class40 World Championships in June 2022, was reported to be the first Class40 yacht to make significant use of flax fiber composites. Infused, hybrid flax/glass fabrics were used to manufacture the hull, cockpit and several other components of the boat.
Some molders elect to use storage silos for resin; these molders usually specialize in one or two closely related markets and mold large parts from one or two materials or millions of parts from the same material. Resin from a silo can be pneumatically pumped to a machine, so little or no shelf space is required for its storage. Other molders, because of the nature of their businesses, opt to store raw materials on the shelf, a procedure that has been known to lead to overcrowding.
CompositesWorld’s CW Tech Days: Infrastructure event offers a series of expert presentations on composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.
Recoat temperature, part orientation and bead geometry are some key design variables to consider for a successful and reliable large-format additive manufacturing (LFAM) process.
The choice to adopt flax or hemp over synthetic or petroleum-based fibers is a step toward increased sustainability, but natural fibers alone are not enough to truly make a product sustainable. Today, many NFCs are made from traditional resins like epoxy.
Wood-like composites. Lingrove’s ekoa materials are marketed as a flax fiber and plant-based resin alternative to wood for building and automotive interiors. Texonic, too, has developed a wood-like NFC for use in a variety of sporting goods, automotive, furniture applications and more. Photo Credit: Lingrove (top and middle) and Texonic (bottom)
Program will focus on sustainable, next-gen wing solutions, including in wing design and manufacturing and advancements in carbon fiber-reinforced composite materials.
Machinery manufacturers say that molders use a variety of criteria when looking at a cost-justification evaluation. Some base their decision purely on the lowest price, without taking into consideration the "cost" of the machine. Price is what you pay for the machine now. Cost is what you will pay for the machine long-term, including such things as energy use and maintenance.
These materials are growing in appeal not just because they come from a renewable source, but because of technical advantages in composites like lightweighting and vibration and noise damping, as well as aesthetic appeal. Vibration and noise damping specifically are broadening the appeal of NFCs in applications like automotive interior components, explains Nicolas Juillard, VP of technology and development at materials supplier Texonic Inc. (Saint-Jean-sur-Richelieu, Quebec, Canada). Texonic, which is part of the Textile Monterey Group (Drummondville, Quebec, Canada), has been working on optimizing natural fibers for use in composites at the R&D level with various partners since 2012, launching its first flax fiber fabric line in 2017.
In the Automated Composites Knowledge Center, CGTech brings you vital information about all things automated composites.
Much of the work done in composites recycling focuses on recovering and reusing higher-performance, higher-cost carbon fiber, begging the questions: Are lower-cost, renewable NFCs worth recycling? Can they survive the same processes as carbon fiber, with high enough properties to reuse? These considerations are still being worked out. As Hexcel’s Fischereder notes, new applications for recycled NFCs are also an important part of the conversation. With a field as new as NFCs, both demand for recycled NFCs and supply are also still immature.
Increasingly, prototype and production-ready smart devices featuring thermoplastic composite cases and other components provide lightweight, optimized sustainable alternatives to metal.
Joe Luttwak, CEO at Lingrove, explains that architects, designers and executives in the interiors industry, for residences and commercial spaces, are increasingly “looking to decarbonize, and need high-performance products.” The company supplies prefabricated panels and surface veneers designed to provide the look of luxury wood. Applications of ekoa veneers include wall and ceiling panels and cabinetry/caseworks products, with flooring in development.
The composites industry is increasingly recognizing the imperative of sustainability in its operations. As demand for lightweight and durable materials rises across various sectors, such as automotive, aerospace, and construction, there is a growing awareness of the environmental impact associated with traditional composite manufacturing processes.
According to Juillard, Texonic continues to be involved in R&D work to develop and optimize additional materials for use in NFCs — with a large focus on hemp fiber as well, which is also continuing to grow in supply and usage. As he explains it, one of the largest factors in choosing natural fiber materials is not necessarily the properties of one type of fiber over another, but localization of the supply. Currently, due in large part to climate, flax is produced most widely in Europe, while the market for hemp agriculture grows in North America.
The increased interest in sustainability — and, importantly, the increase in high-quality flax and hemp fiber — has also led several mainstay suppliers of more traditional composite reinforcements, like fiberglass or carbon fiber, to begin offering natural fiber products.
For example, disposable medical components such as injection syringes are manufactured and used in the millions daily. However, the return from each one of these devices is in the tenths of a cent. Quality and manufacturing requirements are extremely stringent, and the parts generally are made from clear or clear-tinted material, which compounds the difficulty of molding. In order to make a profit, molders who choose this type of high-volume medical work must find ways to keep manufacturing costs at a minimum and efficiency high.
The composites industry plays a crucial role in developing lightweight and durable materials for a range of applications, including those critical to national defense. One key focus area is the development of advanced structural materials and manufacturing technologies that support next-generation space, missile and aircraft systems for the U.S. Department of Defense (DOD). ARC Technologies LLC (ARC), a division of Hexcel Corporation, based in Amesbury, Massachusetts, is a provider of advanced composites structures, specialty materials and other unique products that provide the U.S. Department of Defense with advanced capabilities to protect service members while in harm’s way. This team’s specialty is to understand a specific need from a program office, PEO, platform manufacturer or other offices within the DOD. With that understanding, the team can design a solution, develop a prototype for test and evaluation, perform extensive in-house testing — including electromagnetic, environmental and structural testing — and then partner with the customer through platform evaluation. The Hexcel Amesbury division has a team of engineers on staff, including mechanical, chemical, electrical and research and development specialists that can provide design, testing and manufacturing capabilities to service customer requirements from concept through production. This presentation will illustrate capabilities in advanced composites and other specialty materials structures, focusing on the Hexcel Amesbury team's niche in electromagnetic signature reduction and other unique capabilities.
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
Foundational research discusses the current carbon fiber recycling landscape in Utah, and evaluates potential strategies and policies that could enhance this sustainable practice in the region.
This collection details the basics, challenges, and future of thermoplastic composites technology, with particular emphasis on their use for commercial aerospace primary structures.
Kennametal will cover the influence of different composite materials characteristics on drilling performance and how to optimize the process. Agenda: Who is Kennametal? Hole making challenges in composite materials Innovations for hole making applications Upcoming events and academic partnerships
Further, Hexcel’s Nature Range materials were first prototyped on Blizzard skis at the Tecnica Group Ski Excellence Center. “We expect that winter sports is going to grow into a key market for the Nature Range products, as it provides a challenging set of technical requirements, and successes there will really confirm that we’ve delivered a more sustainable prepreg solution that maintains the performance of our previous products,” notes Fischereder.
Automotive exteriors. Starting with motorsports and Formula 1, natural fibers continue to find a place in high-performance automotive exteriors and supercars. The bottom image shows the focus on flax fiber composites for the Porsche 718 Cayman GT4 Clubsport MR, featuring Bcomp ampliTex and powerRibs. Photo Credit: BMW M Motorsport, via Bcomp Ltd. (top image) and Dr. Ing. h. c. F. Porsche AG, via Bcomp Ltd. (bottom image)
Terre de Lin’s Cazenave also notes that several of the company’s partners have begun successfully replacing fiberglass with flax fiber composites in a variety of recreational and racing boats. One notable and large example is the 9-meter-wide, 18-meter-long flax fiber composite deck for the We Explore proof of concept catamaran, developed by Outremer shipyard, VPLP Design and Kairos Environnement.
This session is designed to demonstrate the benefits of ultra polymers for aerospace applications with real case examples of Syensqo's polymer portfolio. Agenda: Introduction to ultra polymers (PAEK, PEKK, PEEK, PAI) key features Application of ultra polymers in aerospace: concrete examples Benefits of ultra polymers: enhanced performance, durability and cost-efficiency
Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.
As Fietje of Autonational notes, to be effective, the ideal supply chain would involve natural fibers with bio-based resins derived from plant sources, plus an end-of-life (EOL) solution that allows the part or its original components to be recycled for another use.
Several suppliers, including Bcomp and Terre de Lin’s manufacturing branch TDL Technique, are also working on natural fiber materials that are suited for use with thermoplastic resin systems. Carlson notes that as more thermoplastic-based NFCs are developed, recycling will likely become more viable, as thermoplastics can be heated, softened and reshaped via injection molding or extrusion.
Plant Layout Assuming you have the capital to support a startup, or have a budget from corporate headquarters, you start physical construction with the plant. Whether you build or buy, the layout of your plant is a crucial consideration if you're going to have an efficient, profitable operation. Allow approximately 1000 sq ft of space for each molding press; this accounts for offices, molding/production, secondary operations, quality control, storage of materials, and a mold maintenance and repair area.
Along with solving these challenges, in the near term, suppliers aim to scale up their production capacity, expand their product ranges, and penetrate further into new markets and increasingly large-scale applications.
Aerospace manufacturer joins forces with composite materials company to achieve sustainable manufacturing practices that overcome traditional composite layup tooling.
You should also consider whether or not cleanroom molding will be needed; if material handling will be done manually or via automatic pneumatic conveying systems (or a combination); where storage areas for materials will be; and whether the layout for manufacturing will promote production efficiency and minimize part handling in molding, assembly, and any other secondary operations.
Find a Niche and a Focus Most custom molders in business today have found a niche. Through experience, the molder became good at molding a particular type of part or at molding a particular kind of material, or became astute in working in a specific segment of the marketplace. In other words, he acquired an expertise and stuck with it. A captive molder inherits a market or a range of products, but must develop the same expertise and focus that a custom molder does.
Other investment factors include the performance history for the machine under consideration, shot-to-shot repeatability, and whether the machine is geared toward high-volume, high-speed applications or low-volume, slow-cycle requirements. Ultimately, at the end of the day, what is its yield? Determining your ROI is application dependent. Some things can be quantified up front, but others can't until the mold is in the press and parts are running.
This push for sustainability solutions, alongside supply chain and technical advancements in natural fiber materials, and processes to manufacture them into composites, are fueling R&D and commercial growth into new markets.
What types of commercial applications are being manufactured with NFCs today? Many of the initial commercial NFC applications were sporting goods and furniture pieces, and these continue to be two leading market areas for the materials, but as raw material supply, natural fiber fabrics and processing technologies evolve, NFCs are increasingly used for applications in even higher-volume or higher-performance markets like automotive and even aerospace.
Another challenge is sensitivity to temperature, especially as companies expand into new types of processing methods and resins. “At the same temperatures used to process carbon or glass fibers, natural fiber might start to char or decompose,” explains Christopher Oberste, president and chief engineer of composite lattice manufacturer WEAV3D Inc. (Norcross, Ga., U.S.).
Formnext Chicago is an industrial additive manufacturing expo taking place April 8-10, 2025 at McCormick Place in Chicago, Illinois. Formnext Chicago is the second in a series of Formnext events in the U.S. being produced by Mesago Messe Frankfurt, AMT – The Association For Manufacturing Technology, and Gardner Business Media (our publisher).
CompPair and Composite Recycling introduce a roof scoop made of recycled fibers to an eco-efficient rally buggy, which channels airflow to the engine for optimal, sustainable performance.
American Bureau of Shipping (ABS) certifies use of jointly developed CFRP repair technique on FPSO and FSO industrial systems, addressing traditional steel restoration challenges.
The larger the press, the more it costs, so the size of the majority of parts that will be molded is an important consideration. In a custom operation try to give yourself some flexibility on either end of the spectrum to also mold somewhat smaller or larger parts. This is an area where your business plan and marketing strategy, which determine the direction of your business, will also help you decide on the size and amount of equipment you'll need.
The following is an edited excerpt from The Business of Injection Molding, by Clare Goldsberry. The book is the first title in the IMM Book Club Injection Molding Management Series, published by IMM. While much of the focus in the book is on a custom injection molding operation, many of the points about plant layout, machinery and equipment required, and staffing apply to captive molding operations as well.
An on-demand mapping tool for anisotropic materials and polymer material fracture prediction model, i-Lupe, aims to help predict impact, crash behaviors.
CompositesWorld’s Tech Days: Design, Simulation and Testing Technologies for Next-Gen Composite Structures is designed to provide a multi-perspective view of the state of the art in design, simulation, failure analysis, digital twins, virtual testing and virtual inspection.
As WEAV3D worked in this area, it became clear that because thermoplastics are involved, the processing window was “very narrow,” Oberste explains. The melt temperature of the polypropylene commonly used in the company’s products is only 10 to 15°F lower than the top temperature the natural fibers can survive. The WEAV3D process is an adhesive-free technology that relies on heating the tape to the resin’s melt temperature in order to bond it to the material the lattice is being made to reinforce. Therefore, “the amount of heat and how fast [the tape] moves through the heating zone have to be very carefully controlled, so that you don’t have degradation of the fiber during processing.”
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
CompositesWorld is the source for reliable news and information on what’s happening in fiber-reinforced composites manufacturing. About Us
Initial demonstration in furniture shows properties two to nine times higher than plywood, OOA molding for uniquely shaped components.
Other composites processes are also being adapted for use with NFCs, such as filament winding. For the past several years, the R&D branch of filament winding machinery supplier Autonational BV (IJlst, Netherlands) has been working on filament winding, prepreg processing and related machinery specifically geared toward the different mechanical requirements of manufacturing natural fiber composites with bio-based resins, explains Harry Fietje, sales manager at Autonational. This work started with collaboration with a team at the University of Amsterdam (Netherlands), which had created a plant-derived epoxy and were looking for an industry partner to test the material in a real process.
The composites-intensive VTOL platform is next expected to undergo a series of test flights in various conditions to validate its performance, safety and reliability, leading up to eventual certification.
This collection features detail the current state of the industry and recent success stories across aerospace, automotive and rail applications.
This sidebar to CW’s August 2024 feature article reviews this technology for more efficient composites manufacturing and why it aligns with Koridion active core molding.
GETTING A QUOTE WITH LK-MOULD IS FREE AND SIMPLE.
FIND MORE OF OUR SERVICES:


Plastic Molding

Rapid Prototyping

Pressure Die Casting

Parts Assembly
