
Exterior PVC Trim: Soffits, Fascias, and Rakes - l shaped plastic molding
Author:gly Date: 2024-09-30
Another notable aspect of using organoTube braided tape preforms is that they produce very little waste. “With braiding, we have less than 2% waste, and because it is TPC tape, we can use this small amount of waste back in the overmolding to get the material utilization rate up to 100%,” Garthaus emphasizes.
Fig. 3 Tension-compression struts Injection-forming is extended to struts, where herone overmolds a metal load transfer element into the part structure using axial form-locking to increase the join strength.
Low-melt polyaryletherketone (LMPAEK) unidirectional tapes provide outstanding thermal and fire protection, demonstrating their effectiveness through rigorous testing. These tapes are fire, smoke and toxicity compliant with FAR25.853 and meet OSU Heat Release Rate standards. The tapes were tested under ISO 2685/AC 20-135 Change 1, meeting the fireproof criteria. Additionally, they met UL 2596 requirements for battery thermal runaway tests. These tapes are crucial for high-temperature applications showcasing their resilience and safety in both aerospace and automotive applications. Part of a broader range that includes films and compounds, Victrex LMPAEK materials are valued for their excellent processability and weldability. They offer versatile solutions for complex needs beyond traditional structural parts, such as: thermal runaway and lightning strike protection, heat sinking, and intricate bracketry. Victrex LMPAEK materials facilitate automation and high-rate production while addressing performance and sustainability challenges. With reduced environmental impact, lower weight and cost-efficiency, they meet the evolving demands of the transportation industry and support innovative design solutions. Agenda: Introduction to LMPAEK ecosystem, highlighting unidirectional tapes Thermal and fire protection performance: applications and benefits Material forms and processability Sustainability and efficiency Conclusion and future innovations
Over the last 8 months, Archer Aviation has completed a total of 402 test flights with its composites-intensive aircraft, adding to key milestones.
A combination of Airtech’s 3D printing materials and Ascent’s production capabilities aim to support increased use of composite additive tooling in spaces like defense and aerospace.
“We then applied to the German EXIST program, which is aimed at transferring such technology to industry and funds 40-60 projects each year in a wide range of research fields,” says Barfuss. “We received funding for capital equipment, four employees and investment for the next step of scale-up.” They formed herone in May 2018 after exhibiting at JEC World.
CompositesWorld’s CW Tech Days: Infrastructure event offers a series of expert presentations on composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.
This session is designed to demonstrate the benefits of ultra polymers for aerospace applications with real case examples of Syensqo's polymer portfolio. Agenda: Introduction to ultra polymers (PAEK, PEKK, PEEK, PAI) key features Application of ultra polymers in aerospace: concrete examples Benefits of ultra polymers: enhanced performance, durability and cost-efficiency
Recoat temperature, part orientation and bead geometry are some key design variables to consider for a successful and reliable large-format additive manufacturing (LFAM) process.
An on-demand mapping tool for anisotropic materials and polymer material fracture prediction model, i-Lupe, aims to help predict impact, crash behaviors.
Current projections call for a doubling of the commercial aircraft fleet over the next 20 years. To accommodate this, production rates in 2019 for composites-intensive widebody jetliners vary from 10 to 14 per month per OEM, while narrowbodies have already ramped to 60 per month per OEM. Airbus specifically is working with suppliers to switch traditional yet time-intensive, hand layup prepreg parts on the A320 to parts made via faster, 20-minute cycle time processes such as high-pressure resin transfer molding (HP-RTM), thus helping part suppliers meet a further push toward 100 aircraft per month. Meanwhile, the emerging urban air mobility and transport market is forecasting a need for 3,000 electric vertical takeoff and landing (EVTOL) aircraft per year (250 per month).
Sigma Lite braided carbon fiber/thermoplastic pipe cuts jet engine weight yet meets challenging design and manufacturing requirements.
Performing regular maintenance of the layup tool for successful sealing and release is required to reduce the risk of part adherence.
“The industry requires automated production technologies with shortened cycle times that also allow for integrating functions, which are offered by thermoplastic composites,” says Daniel Barfuss, co-founder and managing partner of herone (Dresden, Germany), a composites technology and parts manufacturing firm that uses high-performance thermoplastic matrix materials from polyphenylenesulfide (PPS) to polyetheretherketone (PEEK), polyetherketoneketone (PEKK) and polyaryletherketone (PAEK). “Our main objective is to combine the high performance of thermoplastic composites (TPCs) with lower cost, to enable tailored parts for a wider variety of serial manufacturing applications and new applications,” adds Dr. Christian Garthaus, herone’s second co-founder and managing partner.
MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.
Program will focus on sustainable, next-gen wing solutions, including in wing design and manufacturing and advancements in carbon fiber-reinforced composite materials.
Thermoplastics for Large Structures, experts explored the materials and processing technologies that are enabling the transition to large-part manufacturing.
The ITHEC 2024 will take place from the 9 to 10 October 2024 in Bremen, Germany. At the 7th International Conference, more than 300 participants from around the world will be presenting and discussing newest scientific results, meet leading international specialists, share their expertise and start business co-operations in the field of thermoplastic composite technologies. The international exhibition will feature 40+ exhibitors showcasing all steps of the supply-chain. Be it materials, machines, testing, processes, or solutions. By combining the exhibition and the conference ITHEC is further fostering the inter-connectivity between science and industry.
CompositesWorld is the source for reliable news and information on what’s happening in fiber-reinforced composites manufacturing. About Us
Jetcam’s latest white paper explores the critical aspects of nesting in composites manufacturing, and strategies to balance material efficiency and kitting speed.
Whether you’re exploring new applications or seeking to gain a foothold in emerging markets, Carbon Fiber 2024 is where you’ll discover the insights and connections needed to shape your business strategy. Register now.
The company is also working with eVTOL suppliers and a variety of collaborators in the U.S. As herone matures aviation applications, it is also gaining manufacturing experience with sporting goods applications including bats and bicycle components. “Our technology can produce a wide range of complex parts with performance, cycle time and cost benefits,” says Garthaus. “Our cycle time using PEEK is 20 minutes, versus 240 minutes using autoclave-cured prepreg. We see a wide field of opportunities, but for now, our focus is on getting our first applications into production and demonstrating the value of such parts to the market.”
Advanced Engineering is the UK’s largest annual gathering of engineering and manufacturing professionals. The event will help you to source new suppliers, network, build connections and learn about the latest industry developments all in one place. Get involved and exhibit alongside 400+ exhibitors offering solutions and products across all industries and sectors to help improve your productivity and inspire creativity. With over 9,000+ of your peers due to attend and ready to network with and inspire you, this is the event you can’t afford to miss!
This overmolding not only reduces assembly costs, manufacturing steps and logistics, but it also enhances performance. The difference of 40°C between the melt temperature of the PAEK shaft and that of the overmolded PEEK gear enables cohesive melt-bonding between the two at the molecular level. A second type of join mechanism, form-locking, is achieved by using the injection pressure to simultaneously thermoform the shaft during overmolding to create a form-locking contour. This can be seen in Fig. 1 below as “injection-forming”. It creates a corrugated or sinusoidal circumference where the gear is joined versus a smooth circular cross-section, which results in a geometrically locking form. This further enhances the strength of the integrated gearshaft, as demonstrated in testing (see graph at bottom right). Fig. 1. Developed in collaboration with Victrex and ILK, herone uses injection pressure during overmolding to create a form-locking contour in the integrated gearshaft (top).This injection-forming process allows the integrated gearshaft with form locking (green curve on graph) to sustain a higher torque vs. an overmolded gear-driveshaft without form-locking (black curve on graph).
“A lot of people are achieving cohesive melt-bonding during overmolding,” says Garthaus, “and others are using form-locking in composites, but the key is to combine both into a single, automated process.” He explains that for the test results in Fig. 1, both the shaft and full circumference of the gear were clamped separately, then rotated to induce shear loading. The first failure on the graph is marked by a circle to indicate it is for an overmolded PEEK gear without form-locking. The second failure is marked by a crimped circle resembling a star, indicating testing of an overmolded gear with form-locking. “In this case, you have both a cohesive and form-locked join,” says Garthaus, “and you gain almost a 44% increase in torque load.” The challenge now, he says, is to get the form-locking to take up load at an earlier stage to further increase the torque this gearshaft will handle before failure.
Reliable news and information on where and how fiber-reinforced composites are being applied — that’s just the start of what you get from our team here at CompositesWorld.
Aerospace manufacturer joins forces with composite materials company to achieve sustainable manufacturing practices that overcome traditional composite layup tooling.
“The main benefit we give is to decrease the number of parts,” he notes. “This simplifies fatigue, which is a big challenge for aircraft strut applications. Form-locking is already used in thermoset composites with a plastic or metal insert, but there is no cohesive bonding, so you can get a slight movement between the parts. Our approach, however, provides a unitized structure with no such movement.”
Formnext Chicago is an industrial additive manufacturing expo taking place April 8-10, 2025 at McCormick Place in Chicago, Illinois. Formnext Chicago is the second in a series of Formnext events in the U.S. being produced by Mesago Messe Frankfurt, AMT – The Association For Manufacturing Technology, and Gardner Business Media (our publisher).
During this webinar, the audience will be introduced to a variety of fiber composite technologies — as well as the machines and equipment — from short fibers to continuous fibers, from thermoset to thermoplastic, as well as the according process technology, including a special focus on long-fiber injection (LFI) and structural composite spray (SCS). Focus markets include automotive, aviation and AAM, transportation, and construction. This webinar will provide a detailed overview of according application examples. Agenda: Long fiber injection (LFI) Structural composite spray (SCS) Resin transfer molding (RTM), wet compression molding, etc. Pultrusion FiberForm
Base Materials introduces a high-performance, toughened epoxy tooling board designed for thermoforming and vacuum forming processes, direct-to-part applications and more.
Analyzing structural resonance of the aircraft under various loads becomes a critical step in obtaining flight certification.
CW Tech Days are virtual events dedicated to the topics impacting the composites industry today. Access past event recordings and register for upcoming Tech Days.
This sounds similar to what Sigma Precision Components (Hinckley, U.K.) is doing (see “Redressing aeroengines with composite pipes”) with its carbon fiber/PEEK engine dressing. “They are looking at similar parts but use a different consolidation method,” Garthaus explains. “With our approach, we see potential for increased performance, such as less than 2% porosity for aerospace structures.”
Explore the technologies, materials and strategies used by composites manufacturers working in the evolving space market.
The first project is underway to recover carbon fiber used in an A330-200 aircraft, which will then be regenerated for other end uses by HRC.
Even though demonstration struts show a metal insert, herone is currently developing an all-thermoplastic solution, enabling cohesive bonding between the composite strut body and the load introduction element. “When we can, we prefer to stay all-composite and adjust properties by altering the type of fiber reinforcement, including carbon, glass, continuous and short fiber,” says Garthaus. “In this way, we minimize complexity and interface issues. For example, we have much less problems compared to combining thermosets and thermoplastics.” In addition, the bond between PAEK and PEEK has been tested by Tri-Mack with results showing it has 85% of the strength of a base unidirectional CF/PAEK laminate and is twice as strong as adhesive bonds using industry-standard epoxy film adhesive.
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.
CW’s editors are tracking the latest trends and developments in tooling, from the basics to new developments. This collection, presented by Composites One, features four recent CW stories that detail a range of tooling technologies, processes and materials.
Garthaus cites damage tolerance as another challenge for these parts. “You have to impact the struts and then do fatigue testing,” he explains. “Because we are using high-performance thermoplastic matrix materials, we can achieve as much as 40% higher damage tolerance versus thermosets, and also any microcracks from impact grow less with fatigue loading.”
During this CW Tech Days event, sponsored by Composites One, experts will offer presentations to review and evaluate the composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.
Celebrating National Composites Week 2024, CW looks at how composites are being used to provide the next generation of energy.
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
An important point about the contour form-locking that herone achieves with its injection-forming is that it is completely tailored to the individual part and the loading that part must withstand. For example, in the gearshaft, the form-locking is circumferential, but in the tension-compression struts below, it is axial. “This why what we have developed is a broader approach,” says Garthaus. “How we integrate functions and parts depends on the individual application, but the more we can do this, the more weight and cost we can save.”
Arris presents mechanical testing results of an Arris-designed natural fiber thermoplastic composite in comparison to similarly produced glass and carbon fiber-based materials.
This collection features detail the current state of the industry and recent success stories across aerospace, automotive and rail applications.
In these sessions, experts will discuss the emerging hydrogen economy and the opportunities for composites in this lucrative space.
The functional element for the tension-compression struts is a metallic interface part that transfers loads to and from the metal fork to the composite tube (see illustration below). Injection-forming is used to integrate the metallic load introduction element into the composite strut body.
Whether you’re exploring new applications or seeking to gain a foothold in emerging markets, Carbon Fiber 2024 is where you’ll discover the insights and connections needed to shape your business strategy. Register now.
CompositesWorld’s Tech Days: Design, Simulation and Testing Technologies for Next-Gen Composite Structures is designed to provide a multi-perspective view of the state of the art in design, simulation, failure analysis, digital twins, virtual testing and virtual inspection.
A new polymer and a hybrid process enable production of complex, high-load-capable, fiber-reinforced brackets and clips in minutes.
Increasingly, prototype and production-ready smart devices featuring thermoplastic composite cases and other components provide lightweight, optimized sustainable alternatives to metal.
The composites-intensive VTOL platform is next expected to undergo a series of test flights in various conditions to validate its performance, safety and reliability, leading up to eventual certification.
Herone, Spiral RTC, Teijin Carbon Europe and Collins Aerospace Almere recycle A350 thermoplastic composite clips/cleats waste into rods for the all-thermoplastic composite Multifunctional Fuselage Demonstrator’s crown.
An overview of ASTM Standard Guide D8509, and its coupon-level mechanical testing of design properties for analyzing composite bolted joints.
Foundational research discusses the current carbon fiber recycling landscape in Utah, and evaluates potential strategies and policies that could enhance this sustainable practice in the region.
Continuous fiber-reinforced thermoplastic composite targets full circularity in aircraft interior applications, with FST, impact resistance and toughness features.
Barfuss and Garthaus began their development work as researchers at the Institute of Lightweight Engineering and Polymer Technology (ILK) at TU Dresden. “This is one of the largest European institutes for composites and hybrid lightweight designs,” notes Barfuss. He and Garthaus worked there for almost 10 years on a number of developments, including continuous TPC pultrusion and different types of joining. That work eventually was distilled into what is now the herone TPC process technology.
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
The herone process starts with fully impregnated carbon fiber-reinforced thermoplastic tapes that are braided into organoTubes and consolidated. “We started working with these organoTubes 10 years ago, developing composite hydraulic pipes for aviation,” says Garthaus. He explains that because no two aircraft hydraulic pipes have the same geometry, a mold would be needed for each one, using existing technology. “We needed a pipe that could be post-processed to achieve the individual pipe geometry. So, the idea was to make continuous composite profiles and then CNC bend these into the desired geometries.”
The composites industry plays a crucial role in developing lightweight and durable materials for a range of applications, including those critical to national defense. One key focus area is the development of advanced structural materials and manufacturing technologies that support next-generation space, missile and aircraft systems for the U.S. Department of Defense (DOD). ARC Technologies LLC (ARC), a division of Hexcel Corporation, based in Amesbury, Massachusetts, is a provider of advanced composites structures, specialty materials and other unique products that provide the U.S. Department of Defense with advanced capabilities to protect service members while in harm’s way. This team’s specialty is to understand a specific need from a program office, PEO, platform manufacturer or other offices within the DOD. With that understanding, the team can design a solution, develop a prototype for test and evaluation, perform extensive in-house testing — including electromagnetic, environmental and structural testing — and then partner with the customer through platform evaluation. The Hexcel Amesbury division has a team of engineers on staff, including mechanical, chemical, electrical and research and development specialists that can provide design, testing and manufacturing capabilities to service customer requirements from concept through production. This presentation will illustrate capabilities in advanced composites and other specialty materials structures, focusing on the Hexcel Amesbury team's niche in electromagnetic signature reduction and other unique capabilities.
Making these TPC hollow profiles was actually one of the hardest challenges, says Garthaus. “You cannot use stamp-forming or blow-molding with a silicone bladder; so, we had to develop a new process.” But this process enables very high-performance and tailorable tube and shaft-based parts, he notes. It also enabled using the hybrid molding that Victrex developed, where lower melt temperature PAEK is overmolded with PEEK, consolidating the organosheet and injection molding in a single step.
New aircraft is expected to deliver wind turbine blades from 105 meters up to expand the reach of wind energy and achieve global climate goals.
By JEC World 2019, herone had produced a range of demonstration parts, including a lightweight, high-torque, integrated gear driveshaft, or gearshaft. “We use a carbon fiber/PAEK tape organoTube braided at the angles required by the part and consolidate that into a tube,” Barfuss explains. “We then preheat the tube at 200°C and overmold it with a gear made by injecting short carbon fiber-reinforced PEEK at 380°C.” The overmolding was modeled using Moldflow Insight from Autodesk (San Rafael, Calif., U.S.). Mold fill time was optimized to 40.5 seconds and achieved using an Arburg (Lossburg, Germany) ALLROUNDER injection molding machine.
Cevotec, a tank manufacturer, Roth Composite Machinery and Cikoni, have undertaken a comprehensive project to explore and demonstrate the impact of dome reinforcements using FPP technology for composite tanks.
Combining braided tape, overmolding and form-locking, herone produces one-piece, high-torque gear-driveshaft as demonstrator for broad range of applications.
Kennametal will cover the influence of different composite materials characteristics on drilling performance and how to optimize the process. Agenda: Who is Kennametal? Hole making challenges in composite materials Innovations for hole making applications Upcoming events and academic partnerships
The JEC Forum DACH is a business meetings event organised by JEC The JEC Forum DACH is organised on October 22 and 23, 2024 by JEC, in partnership with the AVK, gathering the composite materials community from the DACH Region (Germany, Austria and Switzerland).
American Bureau of Shipping (ABS) certifies use of jointly developed CFRP repair technique on FPSO and FSO industrial systems, addressing traditional steel restoration challenges.
Recoat temperature, part orientation and bead geometry are some key design variables to consider for a successful and reliable large-format additive manufacturing (LFAM) process.
Additionally, stitch-bonded non-crimp fabrics (NCFs) provide manufacturers and asset owners even more ways to gain a competitive advantage with products built specifically for the environments and loading conditions in which they will be utilized. Join Vectorply Corporation and Creative Composites Group (CCG) for this in-depth webinar detailing the process of engineering NCFs to build composite parts that will stand the test of time. Unlike steel, concrete and wood, composite NCFs can be optimized utilizing various fiber types, architectures and substrates to achieve the specific goals of their application efficiently. High corrosion resistance, strength and stiffness, and longevity can all be accomplished with custom-designed laminates for these heavily abused applications. Vectorply Vice President of Engineering Trevor Gundberg and Creative Composites Group Chief Sales Officer Dustin Troutman will share their industry-leading expertise on the process of laminate design and part production. Attendees can expect to learn when to use composite NCFs in their production process and the wide range of fiber-reinforced plastic (FRP) composites that Creative Composites Group produces for the industrial and infrastructure markets. Whether you want to learn more about utilizing NCFs in your production process or why CCG’s extensive product line may be the choice for your project, this webinar is the place learn the process and how to take the next steps. Agenda: Distinct advantages of non-crimp fabrics versus alternative materials How to design laminates for specific processes such as pultrusion and infusion Real-world success spotlights of NCFs in industrial applications
Stephen Heinz, vice president of R&I for Syensqo delivered an inspirational keynote at SAMPE 2024, highlighting the significant role of composite materials in emerging technologies and encouraging broader collaboration within the manufacturing community.
Explore the cutting-edge composites industry, as experts delve into the materials, tooling, and manufacturing hurdles of meeting the demands of the promising advanced air mobility (AAM) market. Join us at CW Tech Days to unlock the future of efficient composites fabrication operations.
The composite tubes white paper explores some of the considerations for specifying composite tubes, such as mechanical properties, maintenance requirements and more.
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
This collection details the basics, challenges, and future of thermoplastic composites technology, with particular emphasis on their use for commercial aerospace primary structures.
Also, the short-fiber reinforced ketone used in overmolded functional elements like gears provides excellent wear surfaces. Victrex has proven this and in fact, markets this fact for its PEEK and PAEK materials.
A report on the demand for hydrogen as an energy source and the role composites might play in the transport and storage of hydrogen.
This sidebar to CW’s August 2024 feature article reviews this technology for more efficient composites manufacturing and why it aligns with Koridion active core molding.
Six U.S. companies have proven their recycling technologies for composites and rare earth elements, and will be supported for relevant scale demonstration and validation.
Closed mold processes have many advantages over open molding. In this knowledge center, learn the basics and vital tools needed to produce parts accurately.
EU project will develop bio-based, repairable and recyclable vitrimer composites and advanced sensors for highly reliable, sustainable wind blades.
The Marservis PROeco is a mass transportation marine vessel using Bcomp natural fiber for interior parts in place of standard materials.
CompPair and Composite Recycling introduce a roof scoop made of recycled fibers to an eco-efficient rally buggy, which channels airflow to the engine for optimal, sustainable performance.
Led by global and industry-wide sustainability goals, commercial interest in flax and hemp fiber-reinforced composites grows into higher-performance, higher-volume applications.
CompositesWorld's Carbon Fiber conference offers you cutting-edge information and access to industry experts in streamlining manufacturing costs, market outlooks and forecasting, and more. You will make invaluable contacts as you meet and network with the industry's most innovative and influential leaders at Carbon Fiber. __PRESENT
Our updated guide to top metal 3D printing services help you order everything from stainless steel tools to gold jewelry and copper heatsinks.
Unitized composite gear-driveshaft. Herone uses braided thermoplastic composite prepreg tapes as preforms for a process which consolidates the driveshaft laminate and overmolds functional elements such as gears, producing unitized structures which reduce weight, part count, assembly time and cost. Source for all images | herone
In the Automated Composites Knowledge Center, CGTech brings you vital information about all things automated composites.
To achieve this, the company has developed a new approach, starting with fully impregnated, continuous fiber tapes, braiding these tapes to form a hollow preform “organoTube” and consolidating the organoTubes into profiles with variable cross-sections and shapes. In a subsequent process step, it uses the weldability and thermoformability of TPCs to integrate functional elements such as composite gears onto driveshafts, end-fittings onto pipes, or load transfer elements into tension-compression struts. Barfuss adds there is the option to use a hybrid molding process — developed by ketone matrix supplier Victrex (Cleveleys, Lancashire, U.K.) and parts supplier Tri-Mack (Bristol, R.I., U.S.) — that uses lower melt temperature PAEK tape for the profiles and PEEK for the overmolding, enabling a fused, single material across the join (see “Overmolding expands PEEK’s range in composites”). “Our adaptation also enables geometrical form-locking,” he adds, “which produces integrated structures that can withstand even higher loads.”
Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.
Garthaus’ Ph.D. thesis work at the ILK explored using continuous thermoplastic composite (TPC) pultrusion to produce braided tubes, which resulted in a patented continuous manufacturing process for TPC tubes and profiles. However, for now, herone has chosen to work with aviation suppliers and customers using a discontinuous molding process. “This gives us the freedom to make all of the various shapes, including curved profiles and those with varying cross-section, as well as applying local patches and ply drop-offs,” he explains. “We are working to automate the process for integrating local patches and then co-consolidating them with the composite profile. Basically, everything that you can do with flat laminates and shells, we can do for tubes and profiles.”
Fig. 2 Braided prepreg tapes provide net-shape preforms called organoTubes for herone’s injection-forming process and enable production of various shapes.
Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.
Knowing the fundamentals for reading drawings — including master ply tables, ply definition diagrams and more — lays a foundation for proper composite design evaluation.
The composites industry is increasingly recognizing the imperative of sustainability in its operations. As demand for lightweight and durable materials rises across various sectors, such as automotive, aerospace, and construction, there is a growing awareness of the environmental impact associated with traditional composite manufacturing processes.
Barfuss says herone now has nine employees and is transitioning from a supplier of technology development to a supplier of aviation parts. Its next big step is the development of a new factory in Dresden. “By the end of 2020 we will have a pilot plant producing first series parts,” he says. “We are already working with aviation OEMs and key Tier 1 suppliers, demonstrating designs for many different types of applications.”
Barfuss points out that the integrated gearshaft, which was recognized with a 2019 JEC World Innovation Award in the aerospace category, is a “demonstration of our approach, not just a process focused on a single application. We wanted to explore how much we could streamline the manufacturing and exploit the properties of TPCs to produce functionalized, integrated structures.” The company is currently optimizing tension-compression rods, used in applications like struts.
Initial demonstration in furniture shows properties two to nine times higher than plywood, OOA molding for uniquely shaped components.
Validation of 80-100% tensile strength and comparability to injection molding via Voxelfill extrusion process was achieved through plastic and fiber-filled test series.
How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.
GETTING A QUOTE WITH LK-MOULD IS FREE AND SIMPLE.
FIND MORE OF OUR SERVICES:


Plastic Molding

Rapid Prototyping

Pressure Die Casting

Parts Assembly
